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models inspired us to write this book 20 Preface 1. WHAT THE BOOK IS ABOUT Propensity Score Analysis describes a family of new statistical techniques that are useful in causal modeling when randomized experimentation is infeasible. Causal inference is the core interest of all
sciences. Although the randomized clinical trial is deemed the gold standard for research, true experimental designs are not always possible, practical, ethical, or even desirable, leaving quasiexperimental designs predominant in the behavioral, health, and social sciences. Given the
continued reliance on quasi-experimental design and its inherent challenges to evaluation and causality studies, researchers have increasingly sought methods to improve estimates of program effects. Over the past 40 years, researchers have recognized the need for more efficient,
effective approaches for assessing treatment effects when evaluating programs based on quasiexperimental designs. In response to this need, significant changes have been introduced to evaluation methods used with quasi-experimental designs. This growing interest led to a surge in work
focused on estimating average treatment effects under various sets of assumptions. Statisticians such as Paul Rosenbaum and Donald Rubin (1983) and econometricians such as James Heckman (1978, 1979) made substantial contributions to this movement by developing and refining
methods of estimating causal effects from observational data. Collectively, these approaches are known as propensity score analysis (PSA). Written in an accessible fashion, this book is intended to introduce robust and efficient causal models using propensity scores. The book is designed
to be a clear, comprehensive, and applied guide so that social behavioral and health researchers have a quick reference to start their learning of PSA. Chapters pull together and describe eight PSA methods: (1) Heckman’s sample selection model (Heckman, 1978, 1979) and Maddala’s
(1983) treatment effect model, (2) propensity score greedy matching (Rosenbaum & Rubin, 1983) and optimal matching (Rosenbaum, 2002b), (3) propensity score subclassification (Rosenbaum & Rubin, 1983, 1984), (4) propensity score weighting (Hirano & Imbens, 2001; McCaffrey,
Ridgeway, & Morral, 2004), (5) matching estimators (Abadie & Imbens, 2002, 2006), (6) propensity score analysis with nonparametric regression (Heckman, Ichimura, & Todd, 1997, 1998), (7) dosage analysis (Hirano & Imbens, 2004; Imbens, 2000; Joffe & Rosenbaum, 1999), and (8)
Rosenbaum’s (2002a, 2002b) sensitivity analysis to address hidden selection bias. The book employs two conceptual models of observational studies to guide the learning of these new methods—the Neyman21 Rubin counterfactual framework (Neyman, 1923; Rubin, 1974) and Heckman’s
(2005) econometric model of causality. Content focuses on two critical but often violated assumptions: the strongly ignorable treatment assignment assumption (Rosenbaum & Rubin, 1983) and stable unit treatment value assumption (Rubin, 1986). Statistical software packages such as
Stata and R offer a series of programs that allow users to execute analyses of all models in the book. Chapters provide step-by-step illustrations of all eight PSA models, with data and Stata syntax of all examples available in the book’s companion webpage (. 2. NEW IN THE SECOND
EDITION Since publication, the book has received positive feedback, and readers of various disciplines have sent a variety of helpful comments. The second edition has addressed all these comments and suggestions and incorporated the latest advances of PSA that are not included in the
first edition. All errors in the first edition are corrected. Major changes are summarized in the following. The most significant change of the second edition is the relocation of discussion of propensity score subclassification, propensity score weighting, and dosage analysis from Chapter 5 to
separate chapters. These methods are closely related to Rosenbaum and Rubin’s (1983) seminal study of the development of propensity scores—it is for this reason that Chapter 5 of the first edition pooled these methods together. Because subclassification and weighting methods have
been widely applied in recent research and have become recommended models for addressing challenging data issues (Imbens & Wooldridge, 2009), we decided to give each topic a separate treatment. There is an increasing need in social behavioral and health research to model
treatment dosage and to extend the propensity score approach from the binary treatment conditions context to categorical and/or continuous treatment conditions contexts. Given these considerations, we treated dosage analysis in the second edition as a separate chapter. As a result,
Chapter 5 now focuses on propensity score matching methods alone, including greedy matching and optimal matching. In addition to these major changes, the second edition reviews new developments in the PSA field. By chapter, we highlight below this new information. Chapter 1 is an
overview of PSA and retains the original content of the first edition. The overview of computing software packages updates programs newly developed since the publication of the first edition. The chapter also presents a formula for estimating normalized differences (Imbens & Woodridge,
2009), a procedure that may be used as an omnibus check to discern whether PSA is needed in a specific data setting. Chapter 2 focuses on conceptual frameworks and the assumptions of 22 observational studies. The chapter provides a more detailed description of other corrective
methods, particularly the instrumental variable estimator and regression discontinuity designs. The section on treatment effect heterogeneity is new; with illustration, the section shows how to use tests to evaluate effects heterogeneity and the plausibility of the strongly ignorable treatment
assignment assumption. Chapter 5 describes propensity score matching methods. The chapter adds a new section that reviews methods, strategies, and principles of propensity score matching with multilevel data—it describes five types of logistic regression models used in estimating
propensity scores when the data are multilevel and clustered, as well as methods of multilevel outcome analysis, including a crossclassified random effect model, that may be conducted following greedy matching. Chapter 6 is new and describes propensity score subclassification. The
chapter discusses the principles of and steps in running multivariate outcome analysis (e.g., a Cox proportional hazards model or a structural equation modeling) for each propensity score—generated subclass. It then shows how to aggregate the estimated treatment effects from all
subclasses to calculate an overall treatment effect for the entire sample. Because the overlap assumption is likely to be violated in subclassification, the chapter describes a trimming approach developed by Crump, Hotz, Imbens, and Mitnik (2009). The section on the stratification-multilevel
method is new and describes the approach that Xie, Brand, and Jann (2012) developed for modeling treatment effect heterogeneity. With illustration, the chapter discusses principles for running structural equation modeling in conjunction with propensity score subclassification. Chapter 7 is
new and describes the propensity score weighting estimator; specifically, it shows how to use estimated propensity scores to estimate the sample average treatment effect and the sample average treatment effect for the treated. Compared to the first edition, the chapter provides a more
detailed description of the statistical principles of weighting. The examples of using propensity score weighting to conduct a Cox proportional hazards model and a structural equation model are new. Chapter 10 describes dosage analysis based on estimated propensity scores. Developed by
Hirano and Imbens (2004), the information on the generalized propensity score estimator is new. The approach is an innovative method to generalize propensity score modeling from binary treatment conditions to categorical and/or continuous treatments settings. It may be used in
numerous settings to address challenging data issues and to address questions regarding the differential impact of treatment exposure. Chapter 11 discusses selection bias and Rosenbaum’s sensitivity analysis. Extending the first edition, the chapter adds two methods to the Monte Carlo
study: propensity score weighting and subclassification. As such, the data 23 simulation compares six models to assess the capacity of each method to correct for selection bias: ordinary least squares (OLS) regression, propensity score greedy matching, Heckman-typed treatment effect
model, matching estimator, propensity score weighting to estimate average treatment effect, and propensity score subclassification. The newly added information provides readers with a more comprehensive evaluation of different corrective strategies, and more important, it shows the value
of assessing assumptions embedded in specific models when making decisions about an analytic plan. Chapter 12 provides concluding remarks. Given that the PSA field is growing, the chapter adds new information from systematic reviews in epidemiology and medical research using PSA.
The information may help readers develop a balanced view about the pros and cons of propensity score modeling, including the importance of following guidelines in running propensity score analyses. One of the findings from these systematic reviews is that users of PSA should always
check data balance to make sure that a corrective method has succeeded; without such information, the PSA approach runs into the same risk of suffering from an endogeneity problem as a covariance control model. As a new and rapidly growing class of evaluation methods, PSA is by no
means considered the best alternative to randomized experiments, and there is ongoing debate on the advantages and disadvantages of PSA. Chapter 12 presents criticisms of PSA to give readers a balanced perspective. The chapter concludes with a discussion of the “maturity” of PSA
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interventions. 27 CHAPTER 1 Introduction Propensity score analysis is a class of statistical methods developed for estimating treatment effects with nonexperimental or observational data. Specifically, propensity score analysis offers an approach to program evaluation when randomized
trials are infeasible or unethical, or when researchers need to assess treatment effects from survey data, census data, administrative data, medical records data, or other types of data “collected through the observation of systems as they operate in normal practice without any interventions
implemented by randomized assignment rules” (Rubin, 1997, p. 757). In the social and health sciences, researchers often face a fundamental task of drawing conditioned casual inferences from quasi-experimental studies. Analytical challenges in making causal inferences can be addressed
by a variety of statistical methods, including a range of new approaches emerging in the field of propensity score analysis. This book focuses on seven closely related but technically distinct models for estimating treatment effects: (1) Heckman’s sample selection model (Heckman, 1976,
1978, 1979) and its revised version (Maddala, 1983), (2) propensity score matching (Rosenbaum, 2002b; Rosenbaum & Rubin, 1983) and related models, (3) propensity score subclassification (Rosenbaum & Rubin, 1983, 1984), (4) propensity score weighting (Hirano & Imbens, 2001;
Hirano, Imbens, & Ridder, 2003; McCaffrey, Ridgeway, & Morral, 2004), (5) matching estimators (Abadie & Imbens, 2002, 2006), (6) propensity score analysis with nonparametric regression (Heckman, Ichimura, & Todd, 1997, 1998), and (7) propensity score analysis of categorical or
continuous treatments (Hirano & Imbens, 2004; Imbens, 2000; Joffe & Rosenbaum, 1999). Although statisticians and econometricians have not reached consensus on the scope and content of propensity score analysis, the statistical models described in this book share several similar
characteristics: Each has the objective of assessing treatment effects and controlling for covariates, each represents stateof-the-art analysis in program evaluation, and each can be employed to overcome various kinds of challenges encountered in research. Although the randomized
controlled trial is deemed to be the gold standard in research design, true experimental designs are not always possible, practical, or even desirable in the social and health sciences. Given a continuing reliance on 28 quasi-experimental design, researchers have increasingly sought
methods to improve estimates of program effects. Over the past 35 years, methods of program evaluation have undergone a significant change as researchers have recognized the need to develop more efficient approaches for assessing treatment effects from studies based on
observational data and for evaluations based on quasi-experimental designs. This growing interest in seeking consistent and efficient estimators of program effectiveness led to a surge in work focused on estimating average treatment effects under various sets of assumptions. Statisticians



(e.g., Rosenbaum & Rubin, 1983) and econometricians (e.g., Heckman, 1978, 1979) have made substantial contributions by developing and refining new approaches for the estimation of causal effects from observational data. Collectively, these approaches are known as propensity score
analysis. Econometricians have integrated propensity score models into other econometric models (i.e., instrumental variable, control function, difference-indifferences estimators) to perform less expensive and less intrusive nonexperimental evaluations of social, educational, and health
programs. Furthermore, recent criticism and reformulations of the classical experimental approach in econometrics symbolize an important shift in evaluation methods. The significance of this movement was evidenced by the selection of James Heckman as one of the 2000 Nobel Prize
award winners in the field of economics. The prize recognized his development of theory and methods for data analysis in selective samples. As a new and rapidly growing class of evaluation methods, propensity score analysis is by no means conceived as the best alternative to
randomized experiments. In empirical research, it is still unknown under what circumstances the approach appears to reduce selection bias and under what circumstances the conventional regression approach (i.e., use of statistical controls) remains adequate. There are certainly debates
about the advantages and disadvantages of propensity score modeling. These focus, primarily, on the extent to which propensity score methods offer effective and efficient estimates of treatment effects and on the degree to which they help address many challenging issues embedded in
program evaluation, policy evaluation, and causal inference. The call for developing and using strong research designs to provide a comprehensive understanding of causal processes in program evaluation remains a paramount challenge in all fields of practice. However, it is also a
consensus among prominent researchers that the propensity score approach has reached a mature level. For instance, Imbens and Wooldridge (2009) evaluated recent developments in the econometrics of program evaluation, primarily the methods described by this book, and concluded
that at this stage, the literature has matured to the extent that it has much to offer the empirical researchers. Although the evaluation problem is one where 29 identification problems are important, there is currently a much better understanding of which assumptions are most useful, as well
as a better set of methods for inference given different sets of assumptions. (p. 8) Representing the interest in—and indeed perceived utility of—these new methods, the propensity score approach has been employed in a variety of disciplines and professions such as education (Morgan,
2001), epidemiology (Normand et al., 2001), medicine (e.qg., Earle et al., 2001; Gum, Thamilarasan, Watanabe, Blackstone, & Lauer, 2001), psychology (Jones, D’Agostino, Gondolf, & Heckert, 2004), social work (Barth, Greeson, Guo, & Green, 2007; Barth, Lee, Wildfire, & Guo, 2006; Guo,
Barth, & Gibbons, 2006; Weigensberg, Barth, & Guo, 2009), and sociology (H. L. Smith, 1997). In social welfare studies, economists and others used propensity score methods in evaluations of the National Job Training Partnership Act program (Heckman, Ichimura, & Todd, 1997), the
National Supported Work Demonstration (LaLonde, 1986), and the National Evaluation of Welfare-to-Work Strategies Study (Michalopoulos, Bloom, & Hill, 2004). In describing these new methods, the preparation and writing of this book was guided by two primary objectives. The first
objective was to introduce readers to the origins, main features, and debates centering on the seven models of propensity score analysis. We hope this introduction will help accomplish our second objective of illuminating new ideas, concepts, and approaches that social and health sciences
researchers can apply to their own fields to solve problems they might encounter in their research efforts. In addition, this book has two overarching goals. Our primary goal is to make the past three decades of theoretical and technological advances in analytic methods accessible and
available in a less technical and more practical fashion. The second goal is to promote discussions among social and health sciences researchers regarding emerging strategies and methods for estimating causal effects using nonexperimental methods. The aim of this chapter is to provide
an overview of the propensity score approach. Section 1.1 presents a definition of observational study. Section 1.2 reviews the history and development of the methods. Section 1.3 is an overview of the randomized experimental approach, which is the gold standard developed by
statisticians and the model that should serve as a foundation for the nonexperimental approach. Section 1.4 offers examples drawn from literature beyond the fields of econometrics and statistics. These examples are intended to help readers determine the situations in which the propensity
score approach may be appropriate. Section 1.5 reviews the computing software packages that are currently available for propensity score analysis and the main features of the package used in the models presented throughout this book. Section 1.6 outlines the organization of the book. 30
1.10BSERVATIONAL STUDIES The statistical methods we discuss may be generally categorized as methods for observational studies. According to Cochran (1965), an observational study is an empirical investigation whose objective is to elucidate causal relationships (i.e., cause and
effect) when it is infeasible to use controlled experimentation and to assign participants at random to different procedures. In the general literature related to program evaluation (i.e., nonstatistically oriented literature), researchers use the term quasi-experimental more frequently than
observational studies, with the term defined as studies that compare groups but lack the critical element of random assignment. Indeed, quasi-experiments can be used interchangeably with observational studies, as described in the following quote from Shadish, Cook, and Campbell (2002):
Quasi-experiments share with all other experiments a similar purpose—to test descriptive causal hypotheses about manipulable causes—as well as many structural details, such as the frequent presence of control groups and pretest measures, to support a counterfactual inference about
what would have happened in the absence of treatment. But, by definition, quasiexperiments lack random assignment. Assignment to conditions is by means of self-selection, by which units choose treatment for themselves, or means of administrator selection, by which teachers,
bureaucrats, legislators, therapists, physicians, or others decide which persons should get which treatment. (pp. 13—14) Two features of observational studies merit particular emphasis. First, an observational study concerns treatment effects. A study without a treatment— often called an
intervention or a program—is neither an experiment nor an observational study. Most public opinion polls, forecasting efforts, investigations of fairness and discrimination, and many other important empirical studies are neither experiments nor observational studies (Rosenbaum, 2002b).
Second, observational studies can employ data from nonexperimental, nonobservational studies as long as the focus is on assessing treatment or the effects of receiving a particular service. By this definition, observational data refer to data that were generated by something other than a
randomized experiment and typically include surveys, censuses, or administrative records (Winship & Morgan, 1999). 1.2HISTORY AND DEVELOPMENT The term propensity score first appeared in a 1983 article by Rosenbaum and Rubin, who described the estimation of causal effects
from observational data. Heckman’s (1978, 1979) work on dummy endogenous variables using 31 simultaneous equation modeling addressed the same issue of estimating treatment effects when assignment was nonrandom; however, Heckman approached this issue from a perspective of
sample selection. Although Heckman’s work on the dummy endogenous variable problem employed different terminology, he used the same approach toward estimating a participant’s probability of receiving one of two conditions. Both schools of thought (i.e., the econometric tradition of
Heckman and the statistical tradition of Rosenbaum and Rubin) have had a significant influence on the direction of the field, although the term propensity score analysis, coined by Rosenbaum and Rubin, is used more frequently as a general term for the set of related techniques designed to
correct for selection bias in observational studies. The development of the propensity score approach signified a convergence of two traditions in studying causal inferences: the econometric tradition that primarily relies on structural equation modeling and the statistical tradition that primarily
relies on randomized experiments (Angrist, Imbens, & Rubin, 1996; Heckman, 2005). The econometric tradition dates back to Trygve Haavelmo (1943, 1944), whose pioneering work developed a system of linear simultaneous equations that allowed analysts to capture interdependence
among outcomes, to distinguish between fixing and conditioning on inputs, and to parse out true causal effects and spurious causal effects. The task of estimating counterfactuals, a term generally developed and used by statisticians, is explored by econometricians in the form of a switching
regression model (Maddala, 1983; Quandt, 1958, 1972). Heckman’s (1978, 1979) development of a two-step estimator is credited as the field’s pioneering work in explicitly modeling the causes of selection in the form of a dummy endogenous variable. As previously mentioned, Heckman’s
work followed econometric conventions and solved the problem through structural equation modeling. Historically quite distinct from the econometric tradition, the statistical tradition can be traced back to Fisher (1935/1971), Neyman (1923), and Rubin (1974, 1978). Unlike conventions
based on linear simultaneous equations or structural equation models, the statistical tradition is fundamentally based on the randomized experiment. The principal notion in this formulation is the study of potential outcomes, known as the Neyman-Rubin counterfactual framework. Under this
framework, the causal effects of treatment on sample participants (already exposed to treatments) are explored by observing outcomes of participants in samples not exposed to the treatments. Rubin extended the counterfactual framework to more complicated situations, such as
observational studies without randomization. For a detailed discussion of these two traditions, readers are referred to a special issue of the Journal of the American Statistical Association (1996, Vol. 91, No. 434), which presents an interesting dialogue between statisticians and
econometricians. Significant scholars in the field—including Greenland, Heckman, Moffitt, Robins, and Rosenbaum—participated in a discussion of a 32 study that used instrumental variables to identify causal effects, particularly the local average treatment effect (Angrist et al., 1996). It is
worth noting that the development of propensity score models did not occur in isolation from other important developments. At the same time that propensity score methods were emerging, the social, behavioral, and health sciences witnessed progress in the development of other statistical
methods, such as methods for the control of clustering in multilevel data—for instance, the linear mixed model (Laird & Ware, 1982), hierarchical linear modeling (Raudenbush & Bryk, 2002), and robust standard error estimator (Huber, 1967; White, 1980); methods to analyze latent variables
and to model complex structural relationships among latent variables (e.g., analyzing moderating as well as mediating effects, or models to depict nonrecursive relationship between latent variables)—that is, the structural equation modeling (Bollen, 1989; Jéreskog, 1971); methods for
analyzing categorical and limited dependent variables—that is, the generalized linear models (Nelder & Wedderburn, 1972); methods for analyzing time-to-event data—for instance, the proportional hazards model (Cox, 1972) and marginal approaches to clustered event data (Lee, Wei, &
Amato, 1992; Wei, Lin, & Weissfeld, 1989); and more. When researchers are engaged in observational studies, many of these newly developed models need to be applied in conjunction with propensity score methods, and by the same token, a successful propensity score analysis always
requires a careful examination of other issues of data analysis, including addressing potential violations of statistical assumptions by employing these newly developed methods. In this book, whenever possible, we describe the application of propensity score models in settings where other
data issues are present, and we show how to employ propensity score models in conjunction with the application of other statistical approaches. 1.3 RANDOMIZED EXPERIMENTS The statistical premise of program evaluation is grounded in the tradition of the randomized experiment.
Therefore, a natural starting point in a discussion of causal attribution in observational studies is to review key features of the randomized experiment. According to Rosenbaum (2002b), a theory of observational studies must have a clear conceptual linkage to randomization, so that the
consequences of the absence of randomization can be understood. For example, sensitivity analysis is among Rosenbaum’s approaches to handling data with hidden selection bias; this approach includes the use of test statistics that were developed primarily for randomized experiments,
such as Wilcoxon’s signed rank statistic and Hodges-Lehmann estimates. However, the critiques of social experiments by econometricians (e.g., Heckman & Smith, 1995) frequently include description of the conditions under which randomization is infeasible, particularly under the setting of
social behavioral research. Thus, it 33 is important to review principles and types of randomized experiments, randomization tests, and the challenges to this tradition. Each of these topics is addressed in the following sections. 1.3.1 Fisher's Randomized Experiment The invention of the
randomized experiment is generally credited to Sir Ronald Fisher, one of the foremost statisticians of the 20th century. Fisher’s book, The Design of Experiments (1935/1971), introduced the principles of randomization, demonstrating them with the now-famous example of testing a British
woman’s tea-tasting ability. This example has been cited repeatedly to illustrate the power of randomization and the logic of hypothesis testing (see, e.g., Maxwell & Delaney, 1990; Rosenbaum, 2002b). In a somewhat less technical fashion, we include this example as an illustration of
important concepts in randomized experimentation. In Fisher’s (1935/1971) words, the problem is as follows: A lady declares that by tasting a cup of tea made with milk she can discriminate whether the milk or the tea infusion was first added to the cup. We will consider the problem of
designing an experiment by means of which this assertion can be tested. (p. 11) During Fisher’s time, the dominant practice in experimentation was to control covariates or confounding factors that might contaminate treatment effects. Therefore, to test a person’s tasting ability (i.e., the true
ability to discriminate two methods of tea preparation), a researcher would control factors that could influence the results, such as the temperature of tea, the strength of the tea, the use of sugar, and the amount of milk added, in addition to the myriad potential differences that might occur
among the cups of tea used in an experiment. As Maxwell and Delaney (1990) pointed out, The logic of experimentation up until the time of Fisher dictated that to have a valid experiment here all the cups to be used “must be exactly alike,” except for the independent variable being
manipulated. Fisher rejected this dictum on two grounds. First, he argued that it was logically impossible to achieve, both in the example and in experimentation in general. . . . Second, Fisher argued that, even if it were conceivable to achieve “exact likeness,” or more realistically,
“imperceptible difference” on various dimensions of the stimuli, it would in practice be too expensive to attempt. (p. 40) Instead of controlling for every potential confounding factor, Fisher proposed to control for nothing, namely, to employ a method of randomization. Fisher (1935/1971)
described his design as follows: 34 Our experiment consists in mixing eight cups of tea, four in one way and four in the other, and presenting them to the subject for judgment in a random order. The subject has been told in advance of what the test will consist, namely that she will be asked
to taste eight cups, that these shall be four of each kind, and that they shall be presented to her in a random order, that is in an order not determined arbitrarily by human choice, but by the actual manipulation of the physical apparatus used in games of chance, cards, dice, roulettes, etc., or
more expeditiously, from a published collection of random sampling numbers purporting to give the actual results of such a manipulation. Her task is to divide the 8 cups into two sets of 4, agreeing, if possible, with the treatments received. (p. 12) Before going further, it is crucial to note
several important points regarding Fisher’s design. First, in this example, the unit of analysis is not individual (N # 1), but rather the presentation of the tea cups to the tea taster (i.e., N = 8, in which a total of 8 cases comprise the sample). Second, there is a treatment assignment process in
this example, namely, the order of presentation of tea cups. Using Rosenbaum’s (2002b) notation, this is a random variable Z, and any specific presentation of the tea cups to the taster is a realization of Z, or Z = z. For instance, if a specific presentation of the tea cups consists of four cups
with milk added first followed by four cups with tea added first, then we may write z = (11110000), where z is just one of many possible assignments. In Rosenbaum’s notation, these possible treatment assignments form a set of , and z € . Determining the total number of elements in (which
Rosenbaum denoted as K) is an important task for experimental design and a task that can be accomplished using probability theory. This point will be discussed in more detail elsewhere. Third, there is an actual outcome r, which is the result of tasting the eight cups of tea. If the taster gives
exactly the same order of tea cups as in the treatment assignment (i.e., she correctly identifies the first four cups as having the milk added first and the next four cups as having the tea added first), then the outcome would be recorded as r = (11110000). Last, the test essentially aims to
determine whether the tea taster had the true ability to discriminate the two kinds of tea or whether she made her correct judgment accidentally by guessing. Thus, the null hypothesis (HO) under testing would be “She has no ability to discriminate,” and the test involves finding statistical
evidence to reject the null hypothesis at a given significance level. Building on these explanations, we continue with the tea-tasting test and describe how Fisher implemented his randomized experiment. One important feature of randomized experiments is that, in advance of implementation,
the researcher must calculate probable outcomes for each study unit. Fisher (1935/1971) emphasized “forecasting all possible outcomes,” even at a design stage when outcome data are completely absent: “In considering the 35 appropriateness of any proposed experimental design, it is
always needful to forecast all possible results of the experiment, and to have decided without ambiguity what interpretation shall be placed upon each one of them” (p. 12). The key of such calculation is to know the total number of elements in the set of (i.e., the value of K). In the above
example, we simply made an arbitrary example of treatment assignment 11110000, although many other treatment assignments can be easily figured out, such as alternating cups of tea with the milk added first with the cups prepared by adding the tea infusion first (i.e., 10101010), or
presenting four cups with tea infusion added first and then four cups with milk added first (i.e., 00001111). In statistics, the counting rules (i.e., permutations and combinations) inform us that the number of total possible ways to present the eight cups can be solved by finding out the number
of combinations of eight things taken four at a time, or 8C4, as The solution to our problem is Therefore, there are 70 possible ways to present the tea taster with four cups with milk added first and four cups with tea added first. We can keep writing 11110000, 10101010, 00001111, . . . until
we exhaust all 70 ways. Here, 70 is the number of total elements in the set of Q or all possibilities for a treatment assignment. To perform a statistical test of “HO: No ability,” Fisher turned to the task of looking into the possible outcomes r. Furthermore, if we define the taster’s true ability to
taste discriminately as requiring all eight cups she identified to match exactly what we presented to her, we can then calculate the probability of having the true outcome. The significance test performed here involves rejecting the null hypothesis, and the null hypothesis is expressed as “no
ability.” Fisher used the logic of “guessing the outcome right”; that is, the taster has no ability to discriminate but makes her outcome correct by guessing. Thus, what is the probability of having the outcome r that is identical to the treatment assignment z? The outcome r should have one set
of values from the 70 possible treatment assignments; that is, the taster could guess any outcome from 70 possible outcomes of 11110000, 10101010, 00001111, .. .. Therefore, the probability of guessing the right outcome is 1/70 = .0124, which is a very low probability. Now, we can
reject the null hypothesis under a small probability of making a Type | error (i.e., the tea taster did have the ability, but we erroneously rejected the “no ability” hypothesis), and the chance is indeed very low (.0124). In other words, based on statistical evidence (i.e., an examination of all
possible 36 outcomes), we can reject the “no ability” hypothesis at a statistical significance level of .05. Thus, we may conclude that under such a design, the taster may have true tasting ability (p < .05). Rosenbaum (2002b) used t(Z, r) to denote the test statistic. In the preceding test
scenario, we required a perfect match—a total of eight agreements— between the treatment (i.e., the order of tea cups presented to the tea-tasting expert) and the outcome (i.e., the actual outcome identified by the taster); therefore, the problem is to find out the probability {t(Z, r) > 8}. This
probability can be more formally expressed in Rosenbaum’s notation as follows: However, if the definition of “true ability” is relaxed to allow for six exact agreements rather than eight agreements (i.e., six cups in the order of outcome match to the order of presentation), we can still calculate
the probability or significance in testing the null hypothesis of “no ability.” As in the earlier computation, this calculation involves the comparison of actual outcome r to the treatment assignment z, and the tea taster’'s outcome could be any one of 70 possible outcomes. Let us assume that the
taster gives her outcome as r = (11110000). We now need to examine how many treatment assignments (i.e., number of z) match this outcome under the relaxed definition of “true ability.” The answer to this question is one perfect match (i.e., the match with eight agreements) plus 16
matches with six agreements (Rosenbaum, 2002b, p. 30), for a total of 17 treatment assignments. To illustrate, we provide all 17 treatment assignments that match to the taster’s outcome 11110000: perfect match 11110000, and the following assignments with six exact agreements:
01111000, 01110001, 01110010, 01110100, 10110100, 10110010, 10110001, 10121000, 11010010, 11010001, 11010100, 11011000, 11100001, 11100010, 11100100, 11101000, where bold numbers indicate agreements.2 Thus, the probability of having six exact agreements is 17/70 =
.243. In Rosenbaum’s notation, the calculation is That is, if we define “true ability” as correctly identifying six out of eight cups of tea, the probability of having a correct outcome increases to .243. The 37 null hypothesis cannot be rejected at a .05 level. In other words, under this relaxed
definition, we should be more conservative, or ought to be more reluctant, to declare that the tea taster has true ability. With a sample of eight cups in total and a relaxed definition of “ability,” the statistical evidence is simply insufficient for us to reject the null hypothesis, and, therefore, the
experimental design is less significant in testing true tasting ability. We have described Fisher’'s famous example of randomized experiment in great detail. Our purpose of doing so is twofold. The first is to illustrate the importance of understanding two processes in generating intervention
data: (1) the treatment assignment process (i.e., there is a random variable Z, and the total number of possible ways K is inevitably large) makes it possible to know in advance the probability of receiving treatment in a uniform randomized experiment and (2) the process of generating
outcome data (i.e., there is an outcome variable r). This topic is revisited both in Chapters 2 and 3, in the discussion of the so-called ignorable treatment assignment, and in Chapter 11, in the discussion of selection bias and sensitivity analysis. The second purpose in providing a detailed
description of Fisher’s experiment was to call attention to the core elements of randomized experiments. According to Rosenbaum (2002b), First, experiments do not require, indeed cannot reasonably require, that experimental units be homogeneous, without variability in their responses. . .
. Second, experiments do not require, indeed, cannot reasonably require, that experimental units be a random sample from a population of units. . . . Third, for valid inference about the effects of a treatment on the units included in an experiment, it is sufficient to require that treatments be
allocated at random to experimental units—these units may be both heterogeneous in their responses and not a sample from a population. Fourth, probability enters the experiment only through the random assignment of treatments, a process controlled by the experimenter. (p. 23) 1.3.2
Types of Randomized Experiments and Statistical Tests Fisher’s framework laid the foundation for randomized experimental design. The method has become a gold standard in program evaluation and continues to be an effective and robust means for assessing treatment effects in nearly
every field of interest from agriculture and business, to computer science, to education, to medicine and social welfare. Furthermore, many sophisticated randomized designs have been developed to estimate various kinds of treatment effects under various settings of data generation. For
example, within the category of uniform randomized experiment,3 in addition to the traditional method of completely randomized experiment, where stratification is absent 38 (i.e., S = 1 and S stands for number of strata), researchers have developed randomized block experiments where
two or more strata are permissible (i.e., S = 2) and paired randomized experiments in which nS = 2 (i.e., the number of study participants within stratum S is fixed at 2), mS = 1 (i.e., the number of participants receiving treatment within stratum S is fixed at 1), and S could be reasonably large
(Rosenbaum, 2002b). A more important reason for studying randomized experiments is that statistical tests developed through randomized experiments may be performed virtually without assumptions, which is not the case for nonrandomized experiments. The class of randomization tests,
as reviewed and summarized by Rosenbaum (2002b), includes 1. Tests for binary outcomes: Fisher’'s (1935/1971) exact test, the MantelHaenszel (1959) statistic, and McNemar’s (1947) test 2. Tests for an outcome variable that is confined to a small number of values representing a
numerical scoring of several ordered categories (i.e., an ordinal variable): Mantel's (1963) extension of the Mantel-Haenszel test 3. Tests for a single stratum S = 1, where the outcome variable may take many numerical values (i.e., an interval or ratio variable): Wilcoxon’s (1945) rank sum
test 4. Tests for an outcome variable that is ordinal and the number of strata S is large compared with sample size N: the Hodges and Lehmann (1962) test using the signed rank statistic As opposed to drawing inferences using these tests in randomized designs, drawing inferences using
these tests in nonrandomized experiments “requires assumptions that are not at all innocuous” (Rosenbaum, 2002b, p. 27). 1.3.3 Critiques of Social Experimentation Although the randomized experiment has proven useful in many applications since Fisher’'s seminal work, the past three
decades have witnessed a chorus of challenges to the fundamental assumptions embedded in the experimental approach. In particular, critics have been quick to note the complexities of applying randomized trials in studies conducted with humans rather than mechanical components,
agricultural fields, or cups of tea. The dilemma presented in social and health sciences studies with human participants is that assigning participants to a control condition means potentially denying treatment or services to those participants; in many settings, such denial of services would be
unethical or illegal. Although the original rationale for using a randomized experiment was the infeasibility of controlling covariates, our evaluation needs have returned to the point where covariant control or its variants (e.g., 39 matching) becomes attractive. This is particularly true in social
behavioral evaluations. In a series of publications, Heckman and his colleagues (e.g., Heckman, 1979; Heckman & Smith, 1995) discussed the importance of directly modeling the process of assigning study participants to treatment conditions by using factors that influence participants’
decisions regarding program participation. Heckman and his associates challenged the assumption that we can depend on randomization to create groups in which the treated and nontreated participants share the same characteristics under the condition of nontreatment. They questioned
the fundamental assumption embedded in the classical experiment: that randomization removes selection bias. Heckman and Smith (1995) in particular held that social behavioral evaluations need to explicitly address four questions, none of which can be handled suitably by the randomized
experiment: (1) What are the effects of factors such as subsidies, advertising, local labor markets, family income, race, and gender on program application decisions? (2) What are the effects of bureaucratic performance standards, local labor markets, and individual characteristics on
administrative decisions to accept applicants and place them in specific programs? (3) What are the effects of family background, subsidies, and local market conditions on decisions to drop out of a program and, alternatively, on the length of time required to complete a program? (4) What
are the costs of various alternative treatments? 1.4 WHY AND WHEN A PROPENSITY SCORE ANALYSIS IS NEEDED Drawing causal inferences in observational studies or studies without randomization is challenging, and it is this task that has motivated statisticians and econometricians
to explore new analytic methods. The seven analytic models that we discuss in this book derive from this work. Although the models differ on the specific means employed, all seven models aim to accomplish data balancing when treatment assignment is nonignorable, to evaluate treatment
effects using nonrandomized or nonexperimental approaches, and/or to reduce multidimensional covariates to a one-dimensional score called a propensity score. To provide a sense of why and when propensity score methods are needed, we use examples drawn from the literature across
various disciplines. Propensity score analysis is suitable to data analysis and to causal inferences for a variety of studies. Most of these examples will be revisited throughout this book. Example 1: Assessing the Impact of Catholic Versus Public Schools on Learning. A long-standing debate
in education is whether Catholic schools (or 40 private schools in general) are more effective than public schools in promoting learning. Obviously, a variety of selections are involved in the formation of “treatment” (i.e., entrance into Catholic schools). To name a few, self-selection is a
process that lets those who choose to study in Catholic schools receive the treatment; school selection is a process that permits schools to select only those students who meet certain requirements, particularly minimum academic standards, to enter into the treatment; financial selection is
a process that excludes from the treatment those students whose families cannot afford tuition; and geographic selection is a process that selects out (i.e., excludes) students who live in areas where no Catholic school exists. Ultimately, the debate on Catholic schools centers on whether
differences observed in outcome data (i.e., academic achievement or graduation rates) between Catholic and public schools are attributable to the intervention or to the fact that the Catholic schools serve a different population. In other words, if the differences are attributable to the
intervention, findings suggest that Catholic schools promote learning more effectively than do public schools, whereas if the differences are attributable to the population served by Catholic schools, findings would show that students currently enrolled in Catholic schools would always
demonstrate better academic outcomes regardless of whether they attended private or public schools. It is infeasible to conduct a randomized experiment to answer these questions; however, observational data such as the National Educational Longitudinal Survey (NELS) data are
available to researchers interested in this question. Because observational data lack randomized assignment of participants into treatment conditions, researchers must employ statistical procedures to balance the data before assessing treatment effects. Indeed, numerous published studies
have used the NELS data to address the question of Catholic school effectiveness; however, the findings have been contradictory. For instance, using propensity score matching and the NELS data, Morgan (2001) found that the Catholic school effect is the strongest only among those
Catholic school students who, according to their observed characteristics, are least likely to attend Catholic schools. However, in a study that used the same NELS data but employed a new method that directly assessed selectivity bias, Altonji, Elder, and Taber (2005) found that attending a
Catholic high school substantially increased a student’s probability of graduating from high school and, more tentatively, attending college. Example 2: Assessing the Impact of Poverty on Academic Achievement. Prior research has shown that exposure to poverty and participation in welfare
programs have strong impacts on child development. In general, growing up in poverty adversely affects a child’s life prospects, and the consequences become more severe with greater exposure to poverty (Duncan, Brooks-Gunn, Yeung, & Smith, 1998; Foster & Furstenberg, 1998, 1999;
P. K. Smith & Yeung, 1998). 41 Most prior inquiries in this field have applied a multivariate analysis (e.g., multiple regression or regression-type models) to samples of nationally representative data such as the Panel Study of Income Dynamics (PSID) or administrative data, although a few
studies employed a correction method such as propensity score analysis (e.g., Yoshikawa, Maguson, Bos, & Hsueh, 2003). Using a multivariate approach with this type of data poses two fundamental problems. First, the bulk of the literature regarding the impact of poverty on children’s
academic achievement assumes a causal perspective (i.e., poverty is the cause of poor academic achievement), whereas the analysis using a regression model is, at best, correlational. In addition, a regression model or covariance control approach is less robust in handling endogeneity
bias. Second, PSID is an observational survey without randomization and, therefore, researchers must take selection bias into consideration when employing PSID data to assess causal effects. Guo and Lee (2008) have made several efforts to examine the impacts of poverty. First, using
PSID data, propensity score models—including optimal propensity score matching, the treatment effects model, and the matching estimator—were used to estimate the impact of poverty. Second, Guo and Lee conducted a more thorough investigation of poverty. That is, in addition to
conventional measures of poverty such as the ratio of income to poverty threshold, they examined 30 years of PSID data to create two new variables: (1) the number of years during a caregiver’s childhood (i.e., ages 6-12 years) that a caregiver used Aid to Families With Dependent
Children (AFDC) and (2) the percentage of time a child used AFDC between birth and 1997 (i.e., the time point when academic achievement data were compared). Last, Guo and Lee conducted both efficacy subset analysis and intent-to-treat analysis and compared findings. Results using
these approaches were more revealing than previous studies. Example 3: Assessing the Impact of a Waiver Demonstration Program. In 1996, the U.S. Congress approved the Personal Responsibility and Work Opportunity Reconciliation Act (PRWORA). Known as welfare reform, PRWORA
ended entitlements to cash assistance that were available under the prior welfare policy, AFDC. As part of this initiative, the federal government launched the Waiver Demonstration program, which allowed participating states and counties to use discretionary funding for county-specific
demonstration projects of welfare reform—as long as these demonstrations facilitated “cost neutrality.” A key feature of the Waiver Demonstration program, as well as several other programs implemented under welfare reform, is that the county has the option of whether to participate in the
Waiver Demonstration. Therefore, by definition, the intervention counties and comparison counties at the state level cannot be formed randomly. Counties that chose to participate differed from counties choosing not to participate. 42 Evaluating such a nonrandomized program is daunting.
Using a Monte Carlo study, Guo and Wildfire (2005) demonstrated that propensity score matching is a useful analytic approach for such data and an approach that provides less biased findings than does an analysis using the state-level population data. Example 4: Assessing the Well-
Being of Children Whose Parents Abuse Substances. A strong, positive association between parental substance abuse and involvement with the child welfare system has been established (e.g., English, Marshall, Brummel, & Coghan, 1998; U.S. Department of Health and Human Services,
1999). Substance abuse may lead to child maltreatment through several mechanisms, such as child neglect that occurs when substanceabusing parents give greater priority to their drug use than to caring for their children, or substance abuse can lead to extreme poverty and inability to
provide for a child’s basic needs (Magura & Laudet, 1996). Policy makers have long been concerned about the safety of children of substance-abusing parents. Drawing on a nationally representative sample from the National Survey of Child and Adolescent Well-Being (NSCAW), Guo et al.
(2006) used a propensity score matching approach to address whether children whose caregivers received substance abuse services were more likely to have rereports of maltreatment than were children whose caregivers did not use substance abuse services. Using the same NSCAW
data, Guo et al. employed propensity score analysis with nonparametric regression to examine the relationship between the participation of a caregiver in substance abuse services and subsequent child outcomes; that is, they investigated whether children of caregivers who used substance
abuse services exhibited more behavioral problems than did children of caregivers who did not use such services. Example 5: Estimating the Impact of Multisystemic Therapy (MST). MST is a multifaceted, short-term (4—6 months), home- and community-based intervention for families with
youths who have severe psychosocial and behavioral problems. Funding for MST in the United States rose from US$5 million in 1995, to approximately US$18 million in 2000, and to US$35 million in 2003. Most evaluations of the program used a randomized experiment approach, and most
studies generally supported the efficacy of MST. However, a recent study using a systematic review approach (J. H. Littell, 2005) found different results. Among the problems observed in previous studies, two major concerns arose: (1) the variation in the implementation of MST and (2) the
integrity of conducting randomized experiments. From a program evaluation perspective, this latter concern is a common problem in social behavioral evaluations: Randomization is often broken or compromised. Statistical approaches, such as propensity score matching, may be helpful
when randomization fails or is impossible (Barth et al., 2007). 43 Example 6: Assessing Program Outcomes in Group-Randomized Trials. The Social and Character Development (SACD) program was jointly sponsored by the U.S. Department of Education (DOE) and the Centers for Disease
Control and Prevention. The SACD intervention project was designed to assess the impact of schoolwide social and character development education in elementary schools. Using a scientific peer review process, seven proposals to implement SACD were chosen by the Institute of
Education Sciences in the U.S. DOE, and the research groups associated with each of the seven proposals implemented different SACD programs in primary schools across the country. At each of the seven sites, schools were randomly assigned to receive either the intervention program
or control curricula, and one cohort of students was followed from third grade (beginning in fall 2004) through fifth grade (ending in spring 2007). A total of 84 elementary schools were randomized to intervention and control at seven sites: lllinois (Chicago), New Jersey, New York (Buffalo,
New York City, and Rochester), North Carolina, and Tennessee. Evaluating programs generated by a group randomization design is often challenging, because the unit of analysis is a cluster—such as a school—and sample sizes are so small as to compromise randomization. At one of the
seven sites, the investigators of SACD designed the Competency Support Program to use a group randomization design. The total number of schools participating in the study within a school district was determined in advance, and then schools were randomly assigned to treatment
conditions within school districts; for each treated school, a school that best matched the treated school on academic yearly progress, percentage of minority students, and percentage of students receiving free or reduced-price lunch was selected as a control school (i.e., data collection only
without receiving intervention). In North Carolina, over a 2-year period, this group randomization procedure resulted in a total of 14 schools (Cohort 1, 10 schools; Cohort 2, 4 schools) for the study: 7 received the Competency Support Program intervention, and 7 received routine curriculum.



As it turned out—as is often the case when implementing randomized experiments in social behavioral sciences—the group randomization did not work out as planned. In some school districts, as few as four schools met the study criteria and were eligible for participation. Just by the luck of
the draw (i.e., by random assignment), the two intervention schools differed systematically on covariates from the two control schools. Thus, when comparing data from the 10 schools, the investigators found the intervention schools differed from the control schools in significant ways: The
intervention schools had lower academic achievement scores on statewide tests (Adequate Yearly Progress [AYP]), a higher percentage of students of color, a higher percentage of students receiving free or reduced-price lunches, and lower mean scores on behavioral composite scales at
baseline. These differences were statistically significant at the .05 level using bivariate tests and logistic regression models. The researchers were confronted with the failure of 44 randomization. Were these selection effects ignored, the evaluation findings would be biased. It is just at this
intersection of design (i.e., failure of randomization) and data analysis that propensity score approaches become very helpful. The preceding examples illustrate conditions under which researchers might consider propensity score modeling. The need for conducting propensity score analysis
can also be determined by an imbalance check. This bivariate analysis of the equivalence of covariates by treatment condition may be viewed as an initial check of group or condition comparability. Balance checks help researchers discern whether data correction approaches more
sophisticated than covariance control or regression modeling may be warranted. Because of its centrality in making analytic decisions, we present details of the imbalance check here. As noted earlier, researchers are often concerned with the validity of inferences from observational studies,
because, in such a setting, the data are generated by a nonrandom process; thus, to determine whether a study requires a correction other than simple covariance control, an initial test using a normalized difference score AX may be undertaken (Imbens & Wooldridge, 2009). The test is
basically a bivariate analysis using the treatment indicator variable and each covariate X, and X can be either a continuous or dichotomous variable. AX is defined as follows: where and are the sample mean values of X, and and are the sample variances of X, for the treatment group and
comparison group, respectively. Examples of applying Equation 1.1 to check normalized differences are shown in Section 6.5.2. Following Imbens and Wooldridge, a A X exceeding .25 is an indication that selection bias exists and linear regression methods tend to be sensitive to the model
specification. In other words, if an initial check of study data shows AX exceeding .25 for numerous covariates, researchers should consider employing corrective approaches other than regression, or at least perform corrective analysis in conjunction with regression analysis. As a family of
corrective approaches, propensity score models have promising properties and offer several advantages under the condition of imbalance. 1.5 COMPUTING SOFTWARE PACKAGES At the time of the first edition of this book, few software packages offered comprehensive procedures to
handle the statistical analyses described in subsequent chapters. Recently, however, more software programs have been developed for propensity score analysis. Our review of software packages 45 indicates that Stata (StataCorp, 2007) and R (R Foundation for Statistical Computing,
2008) offer the most comprehensive computational facilities. Other packages, such as SAS, offer user-developed macros or procedures targeting specific problems (e.g., SAS Proc Assign may be used to implement optimal matching), but they do not offer the variety of analysis options that
is available in Stata and R. Table 1.1 lists the Stata and R procedures available for implementing the analyses described in this book. Just like the rapid growth of propensity score methods per se, computing programs have also developed at a fast pace. Table 1.1 shows some of the
programs currently available. See also Stuart (2014), who provides a comprehensive list of software programs for implementing matching methods and propensity scores in R, Stata, SAS, and SPSS. We have chosen to use Stata to illustrate most approaches. We chose Stata based on our
experience with the software and our conclusion that it is a convenient software package. Specifically, Stata’s program test_condate can be used to test treatment effect heterogeneity described in Chapter 2; heckman and treatreg can be used to solve problems described in Chapter 4;
psmatch2, pscore, boost, imbalance, hodgesil, logistic, xtlogit, xtmelogit, and xtmixed can be used to solve problems described in Chapter 5; pscore, hte, and Stata programming commands can be used to solve problems described in Chapter 6; pweight function specified in a multivariate
model can be used to solve problems described in Chapter 7; nnmatch can be used to solve problems described in Chapter 8; psmatch2 can be used to solve problems described in Chapter 9; pweight function specified in a multivariate model and gpscore can be used to solve problems
described in Chapter 10; and rbounds and mhbounds can be used to perform Rosenbaum’s (2002b) sensitivity analysis described in Chapter 11. In each of these chapters, we will provide examples and an overview of Stata syntax. We provide illustrative examples for one R procedure (i.e.,
optmatch), because this is the only procedure available for conducting optimal matching within R and Stata. All syntax files and illustrative data can be downloaded from this book’s companion website (. Many of the Stata programs described above were macros or ado files developed by
users. At the time this second edition was completed, Stata released its version 13 (StataCorp, 2013). This version of Stata for the first time includes a series of programs facilitating statistical analyses using propensity scores and other methods. Under the title of “Treatment effects,” this
group of programs includes regression adjustment, inverse-probability weights (IPW), doubly robust estimators, matching estimators, overlap plots, and endogenous treatment estimators. Many of these newly released programs offer functions similar to those described in this book, although
the userdeveloped programs will continue to be needed for many analyses. 46 1.6 PLAN OF THE BOOK Chapter 2 offers a conceptual framework for the development of scientific approaches to causal analysis, namely, the Neyman-Rubin counterfactual framework. In addition, the chapter
reviews a closely related, and recently developed, framework that aims to guide scientific inquiry of causal inferences: the econometric model of causality (Heckman, 2005). The chapter includes a discussion of two fundamental assumptions embedded in nearly all outcomeoriented program
evaluations: the ignorable treatment assignment assumption and the stable unit treatment value assumption (SUTVA). Violations of these assumptions pose challenges to the estimation of counterfactuals. The chapter provides a review of corrective methods other than propensity score
analysis, particularly two methods that are widely employed in economic research, namely, the instrumental variables estimator and regression discontinuity design. The chapter offers a discussion on the importance of modeling treatment effect heterogeneity, two tests of effect
heterogeneity, and an example to show the application of these tests. Chapter 3 focuses on the issue of ignorable treatment assignment from the other side of the coin: strategies for data balancing when treatment effects can only be assessed in a nonexperimental design. This chapter aims
to answer the key question of what kind of statistical methods should be considered to remedy the estimation of counterfactuals, when treatment assignment is not ignorable. Moreover, the chapter describes three closely related but methodologically distinctive approaches: ordinary least
squares (OLS) regression, matching, and stratification. The discussion includes a comparison of estimated treatment effects of the three methods under five scenarios. These methods involve making simple corrections when assignment is not ignorable, and they serve as a starting point for
discussing the data issues and features of more sophisticated approaches, such as the seven advanced models described later in the book. The chapter serves as a review of preliminary concepts that are a necessary foundation for learning more advanced approaches. Chapters 4 through
10 present statistical theories using examples to illustrate each of the seven advanced models covered in this book. Chapter 4 describes and illustrates Heckman’s sample selection model in its original version (i.e., the model aims to correct for sample selection) and the revised Heckman
model developed to evaluate treatment effects. Chapter 5 describes propensity score matching, specifically the creation of matched samples using caliper (or Mahalanobis metric) matching and recently developed methods of optimal matching, propensity score matching with multilevel
modeling, estimation of propensity scores with a generalized boosted regression, and various approaches for postmatching analysis of outcomes. Although Chapter 5 focuses on matching, sections on estimating propensity scores and strategies for developing optimal models serve also as
a guide for the methods described in 47 Chapters 6, 7, 9, and 10. In these chapters, virtually the same approaches are used to estimate propensity scores. Chapter 6 focuses on propensity score subclassification, a method that can be applied to outcome variables that are not normally
distributed and special types of models such as structural equation modeling. Chapter 7 describes propensity score weighting, a robust approach that can also be applied to various types of outcome variables, such as time-toevent data, and complex outcome analyses using structural
equation modeling. Chapter 8 describes a collection of matching estimators developed by Abadie and Imbens (2002), who provide an extension of Mahalanobis metric matching. Among the attractive features of this procedure is its provision of standard errors for various treatment effects.
Chapter 9 describes propensity score analysis with nonparametric regression. Specifically, it describes the two-timeperiod difference-in-differences approach developed by Heckman and his colleagues (Heckman, Ichimura, & Todd, 1997, 1998). Chapter 10 describes methods to model
doses of treatment. This chapter extends the basic methods for binary treatment conditions (treated and control) to more complex situations in which a treatment variable has more than two conditions and can be either categorical or continuous. Table 1.1 Stata and R Procedures by Analytic
Methods 48 49 Chapter 11 reviews selection bias, which is the core problem all statistical methods described in this book aim to resolve. This chapter gives the selection bias problem a more rigorous treatment: We simulate two settings of data generation (i.e., selection on observables and
selection on unobservables) and compare the performance of six models under these settings using Monte Carlo studies. Hidden selection bias is a problem that fundamentally distinguishes observational studies from randomized experiments. When key variables are missing, researchers
inevitably stand on thin ice when drawing inferences about causal effects in observational studies. However, Rosenbaum’s (2002b) sensitivity analysis, which is illustrated in Chapter 11, is a useful tool for testing 50 the sensitivity of study findings to hidden selection. This chapter reviews
assumptions for all seven models and demonstrates practical strategies for model comparison. Finally, Chapter 12 focuses on continuing issues and challenges in the field. It reviews debates on whether propensity score analysis can be employed as a replacement for randomized
experiments. It comments on recent advances. And it suggests directions for the development of new approaches to observational studies. NOTES 1. Excel can be used to calculate the number of combinations of 8 things taken 4 at a time by typing the following in a cell: =COMBIN(8,4), and
Excel returns the number 70. 2. If the tea taster gives an outcome other than 11110000, then the number of assignments having six exact agreements remains 17. However, there will be a different set of 17 assignments than those presented here. 3. Uniform here refers to equal probability
for elements in the study population to receive treatment. 51 CHAPTER 2 Counterfactual Framework and Assumptions This chapter examines conceptual frameworks that guide the estimation of treatment effects as well as important assumptions that are embedded in observational studies.
Section 2.1 defines causality and describes threats to internal validity. In addition, it reviews concepts that are generally discussed in the evaluation literature, emphasizing their links to statistical analysis. Section 2.2 summarizes the key features of the Neyman-Rubin counterfactual
framework. Section 2.3 discusses the ignorable treatment assignment assumption. Section 2.4 describes the stable unit treatment value assumption (SUTVA). Section 2.5 provides an overview of statistical approaches developed to handle selection bias. With the aim of showing the larger
context in which new evaluation methods are developed, this focuses on a variety of models, including the seven models covered in this book, and two popular approaches widely employed in economics—the instrumental variables estimator and regression discontinuity designs. Section 2.6
reviews the underlying logic of statistical inference for both randomized experiments and observational studies. Section 2.7 summarizes a range of treatment effects and extends the discussion of the SUTVA. We examine treatment effects by underscoring the maxim that different research
questions imply different treatment effects and different analytic models must be matched to the kinds of effects expected. Section 2.8 discusses treatment effect heterogeneity and two recently developed tests of effect heterogeneity. With illustrations, this section shows how to use the tests
to evaluate effect heterogeneity and the plausibility of the strongly ignorable treatment assignment assumption. Section 2.9 reviews Heckman'’s scientific model of causality, which is a comprehensive, causal inference framework developed by econometricians. Section 2.10 concludes the
chapter with a summary of key points. 2.1 CAUSALITY, INTERNAL VALIDITY, AND THREATS 52 Program evaluation is essentially the study of cause-and-effect relationships. It aims to answer this key question: To what extent can the net difference observed in outcomes between treated
and nontreated groups be attributed to the intervention, given that all other things are held constant (or ceteris paribus)? Causality in this context simply refers to the net gain or loss observed in the outcome of the treatment group that can be attributed to malleable variables in the
intervention. Treatment in this setting ranges from receipt of a well-specified program to falling into a general state such as “being a service recipient,” as long as such a state can be defined as a result of manipulations of the intervention (e.g., a mother of young children who receives cash
assistance under the Temporary Assistance to Needy Families program [TANF]). Rubin (1986) argued that there can be no causation without manipulation. According to Rubin, thinking about actual manipulations forces an initial definition of units and treatments, which is essential in
determining whether a program truly produces an observed outcome. Students from any social or health sciences discipline may have learned from their earliest research course that association should not be interpreted as the equivalent of causation. The fact that two variables, such as A
and B, are highly correlated does not necessarily mean that one is a cause and the other is an effect. The existence of a high correlation between A and B may be the result of the following conditions: (1) Both A and B are determined by a third variable, C, and by controlling for C, the high
correlation between A and B disappears. If that's the case, we say that the correlation is spurious. (2) A causes B. In this case, even though we control for another set of variables, we still observe a high association between A and B. (3) In addition, it is possible that B causes A, in which
case the correlation itself does not inform us about the direction of causality. A widely accepted definition of causation was given by Lazarsfeld (1959), who described three criteria for a causal relationship. (1) A causal relationship between two variables must have temporal order, in which
the cause must precede the effect in time (i.e., if A is a cause and B an effect, then A must occur before B). (2) The two variables should be empirically correlated with one another. And (3), most important, the observed empirical correlation between two variables cannot be explained away
as the result of a third variable that causes both A and B. In other words, the relationship is not spurious and occurs with regularity. According to Pearl (2000), the notion that regularity of succession or correlation is not sufficient for causation dates back to the 18th century, when Hume
(1748/1959) argued, We may define a cause to be an object followed by another, and where all the objects, similar to the first, are followed by an object similar to the second. Or, in other words, where, if the first object had not been, the 53 second never had existed. (sec. VII) On the basis
of the three criteria for causation, Campbell (1957) and his colleagues developed the concept of internal validity, which serves a paramount role in program evaluation. Conceptually, internal validity shares common features with causation. We use the term internal validity to refer to
inferences about whether observed covariation between A and B reflects a causal relationship from A to B in the form in which the variables were manipulated or measured. To support such an inference, the researcher must show that A preceded B in time, that A covaries with B . . . and
that no other explanations for the relationship are plausible. (Shadish et al., 2002, p. 53) In program evaluation and observational studies in general, researchers are concerned about threats to internal validity. These threats are factors affecting outcomes other than intervention or the focal
stimuli. In other words, threats to internal validity are other possible reasons to think that the relationship between A and B is not causal, that the relationship could have occurred in the absence of the treatment, and that the relationship between A and B could have led to the same outcomes
that were observed for the treatment. Nine well-known threats to internal validity are ambiguous temporal precedence, selection, history, maturation, regression, attrition, testing, instrumentation, and additive and interactive effects of threats to internal validity (Shadish et al., 2002, pp. 54—
55). It is noteworthy that many of these threats have been carefully examined in the statistical literature, although statisticians and econometricians have used different terms to describe them. For instance, Heckman, LaLonde, and Smith (1999) referred to the testing threat as the Hawthorne
effect, meaning that an agent’s behavior is affected by the act of participating in an experiment. Rosenbaum (2002b) distinguished between two types of bias that are frequently found in observational studies: overt bias and hidden bias. Overt bias can be seen in the data at hand, whereas
the hidden bias cannot be seen because the required information was not observed or recorded. Although different in their potential for detection, both types of bias are induced by the fact that “the treated and control groups differ prior to treatment in ways that matter for the outcomes under
study” (Rosenbaum, 2002b, p. 71). Suffice it to say that Rosenbaum’s “ways that matter for the outcomes under study” encompass one or more of the nine threats to internal validity. This book adopts a convention of the field that defines selection threat broadly. That is, when we refer to
selection bias, we mean a process that involves one or more of the nine threats listed earlier and not necessarily the more limited definition of selection threat alone. In this sense, then, selection 54 bias may take one or more of the following forms: self-selection, bureaucratic selection,
geographic selection, attrition selection, instrument selection, or measurement selection. 2.2 COUNTERFACTUALS AND THE NEYMANRUBIN COUNTERFACTUAL FRAMEWORK Having defined causality, we now present a key conceptual framework developed to investigate causality:
the counterfactual framework. Counterfactuals are at the heart of any scientific inquiry. Galileo was perhaps the first scientist who used the thought experiment and the idealized method of controlled variation to define causal effects (Heckman, 1996). In philosophy, the practice of inquiring
about causality through counterfactuals stems from early Greek philosophers such as Aristotle (384-322 BCE; Holland, 1986) and Chinese philosophers such as Zhou Zhuang (369-286 BCE; see Guo, 2012). Hume (1748/1959) also was discontent with the regularity of the factual account
and thought that the counterfactual criterion was less problematic and more illuminating. According to Pearl (2000), Hume’s idea of basing causality on counterfactuals was adopted by John Stuart Mill (1843), and it was embellished in the works of David Lewis (1973, 1986). Lewis (1986)
called for abandoning the regularity account altogether and for interpreting “A has caused B” as “B would not have occurred if it were not for A.” In statistics, researchers generally credit the development of the counterfactual framework to Neyman (1923) and Rubin (1974, 1978, 1980Db,
1986) and call it the Neyman-Rubin counterfactual framework of causality. The terms Rubin causal model and potential outcomes model are also used interchangeably to refer to the same model. Other scholars who made independent contributions to the development of this framework
come from a variety of disciplines, including Fisher (1935/1971) and Cox (1958) from statistics, Thurstone (1930) from psychometrics, and Haavelmo (1943), Roy (1951), and Quandt (1958, 1972) from economics. Holland (1986), Sobel (1996), Winship and Morgan (1999), and Morgan and
Winship (2007) have provided detailed reviews of the history and development of the counterfactual framework. So what is a counterfactual? A counterfactual is a potential outcome, or the state of affairs that would have happened in the absence of the cause (Shadish et al., 2002). Thus, for
a participant in the treatment condition, a counterfactual is the potential outcome under the condition of control; for a participant in the control condition, a counterfactual is the potential outcome under the condition of treatment. Note that the definition uses the subjunctive mood (i.e.,
contingent on what “would have happened . . .”), which means that the counterfactual is not observed in real data. Indeed, it is a missing value. Therefore, the fundamental 55 task of any evaluation is to use known information to impute a missing value for a hypothetical and unobserved
outcome. Neyman-Rubin’s framework emphasizes that individuals selected into either treatment or nontreatment groups have potential outcomes in both states: that is, the one in which they are observed and the one in which they are not observed. More formally, assume that each person i
under evaluation would have two potential outcomes (YO0i, Y1i) that correspond, respectively, to the potential outcomes in the untreated and treated states. Let Wi = 1 denote the receipt of treatment, Wi = 0 denote nonreceipt, and Yi indicate the measured outcome variable. The Neyman-
Rubin counterfactual framework can then be expressed as the following modell: In the preceding equation, Wi is a dichotomous variable; therefore, both the terms Wi and (1 — Wi) serve as a switcher. Basically, the equation indicates which of the two outcomes would be observed in the real
data, depending on the treatment condition or the “on/off” status of the switch. The key message conveyed in this equation is that to infer a causal relationship between Wi (the cause) and Yi (the outcome), the analyst cannot directly link Y1i to Wi under the condition Wi = 1; instead, the
analyst must check the outcome of YOi under the condition of Wi = 0 and compare YOi with Y1i. For example, we might hypothesize that a child i who comes from a low-income family has low academic achievement. Here, the treatment variable is Wi = 1 if the child lives in poverty; the
academic achievement Y1i < p if the child has a low academic achievement, where p is a cutoff value defining a low test score and Y1i > p otherwise. To make a causal statement that being poor (Wi = 1) causes low academic achievement Y1i < p, the researcher must examine the outcome
under the status of not being poor. That is, the task is to determine the child’s academic outcome YOi under the condition of Wi = 0, and ask, “What would have happened had the child not lived in a poor family?” If the answer to the question is YOi > p, then the researcher can have
confidence that Wi = 1 causes Y1i < p. The above argument gives rise to many issues that we will examine in detail. The most critical issue is that YOi is not observed. Holland (1986, p. 947) called this issue the fundamental problem of causal inference. How could a researcher possibly
know YOi > p? The Neyman-Rubin counterfactual framework holds that a researcher can estimate the counterfactual by examining the average outcome of the treatment participants and the average outcome of the nontreatment participants in the population. That is, the researcher can
assess the counterfactual by evaluating the difference in mean outcomes between the 56 two groups or “averaging out” the outcome values of all individuals in the same condition. Specifically, let E(YO|W = 0) denote the mean outcome of the individuals who compose the nontreatment
group, and E(Y1|W = 1) denote the mean outcome of the individuals who comprise the treatment group. Because both outcomes in the above formulation (i.e., E(YO|W = 0) and E(Y1|W = 1)) are observable, we can then define the treatment effect as a mean difference: where 1 denotes
treatment effect. This formula is called the standard estimator for the average treatment effect. It is worth noting that under this framework, the evaluation of E(Y1|W = 1) — E(YO|W = 0) can be understood as an effort that uses E(YO|W = 0) to estimate the counterfactual E(YO|W = 1). The
central interest of the evaluation is not in E(YO|W = 0) but in E(YO|W = 1). Returning to our example with the hypothetical child, the solution to the dilemma of not observing the academic achievement for child i in the condition of not being poor is resolved by examining the average academic
achievement for all poor children in addition to the average academic achievement of all nonpoor children in a well-defined population. If the comparison of two mean outcomes leads to T = E(Y1|W = 1) —E(YO|W = 0) < 0, or the mean outcome of all poor children is a low academic
achievement, then the researcher can infer that poverty causes low academic achievement and also can provide support for hypotheses advanced under resources theories (e.g., Wolock & Horowitz, 1981). In summary, the Neyman-Rubin framework offers a practical way to evaluate the
counterfactuals. Working with data from a sample that represents the population of interest (i.e., using y1 and y0 as sample variables denoting, respectively, the population variables Y1 and YO, and w as a sample variable denoting W), we can further define the standard estimator for the
average treatment effect as the difference between two estimated means from sample data: The Neyman-Rubin counterfactual framework provides a useful tool not only for the development of various approaches to estimating potential outcomes but also for a discussion of whether
assumptions embedded in randomized experiments are plausible when applied to social and health sciences studies. In this regard, at least eight issues emerge. 1. In the preceding exposition, we expressed the evaluation of causal effects in an overly simplified fashion that did not take into
consideration any covariates or threats to internal validity. In our hypothetical example where 57 poor economic condition causes low academic achievement, many confounding factors might influence achievement. For instance, parental education could covary with income status, and it
could affect academic achievement. When covariates are entered into an equation, evaluators must impose additional assumptions. These include the ignorable treatment assignment assumption and the SUTVA, which we clarify in the next two sections. Without assumptions, the
counterfactual framework leads us nowhere. Indeed, it is violations of these assumptions that have motivated statisticians and econometricians to develop new approaches. 2. In the standard estimator E(Y1|W = 1) — E(YO|W = 0), the primary interest of researchers is focused on the average
outcome of treatment participants if they had not participated (i.e., E(YO|W = 1)). Because this term is unobservable, evaluators use E(YO|W = 0) as a proxy. It is important to understand when the standard estimator consistently estimates the true average treatment effect for the population.
Winship and Morgan (1999) decomposed the average treatment effect in the population into a weighted average of the average treatment effect for those in the treatment group and the average treatment effect for those in the control group as2 where 1t is equal to the proportion of the
population that would be assigned to the treatment group, and by the definition of the counterfactual model, let E(Y1|W = 0) and E(YO|W = 1) be defined analogously to E(Y1|W = 1) and E(YO|W = 0). The quantities E(Y1|W = 0) and E(YO|W = 1) that appear in the second and third lines of
Equation 2.4 cannot be directly calculated because they are unobservable values of Y. Furthermore, and again on the basis of the definition of the counterfactual model, if we assume that E(Y1|W = 1) = E(Y1|W = 0) and E(YO|W = 0) = E(YO|W = 1), then through substitution starting in the
fourth line of Equation 2.4, we have3 58 Thus, a sufficient condition for the standard estimator to consistently estimate the true average treatment effect in the population is that E(Y1|W = 1) = E(Y1|W = 0) and E(YO|W = 0) = E(YO|W = 1). This condition, as shown by numerous statisticians
such as Fisher (1925), Kempthorne (1952), and Cox (1958), is met in the classical randomized experiment.4 Randomization works in a way that makes the assumption about E(Y1|W = 1) = E(Y1|W = 0) and E(YO|W = 0) = E(YO|W = 1) plausible. When study participants are randomly
assigned either to the treatment condition or to the nontreatment condition, certain physical randomization processes are carried out so that the determination of the condition to which participant i is exposed is regarded as statistically independent of all other variables, including the
outcomes Y1 and YO. 3. The real debate regarding observational studies in statistics centers on the validity of extending the randomization assumption (i.e., that a process yields results independent of all other variables) to analyses in social and health sciences evaluations. Or, to put it
differently, whether the researcher engaged in evaluations can continue to assume that E(YO|W = 0) = E(YO|W = 1) and E(Y1|W = 1) = E(Y1|W = 0). Not surprisingly, supporters of randomization as the central method for evaluating social and health programs answer “yes,” whereas
proponents of the nonexperimental approach answer “no” to this question. The classical experimental approach assumes no selection bias, and therefore, E(YO|W = 1) = E(YO|W = 0). The assumption of no selection bias is indeed true because of the mechanism and logic behind
randomization. However, many authors challenge the plausibility of this assumption in evaluations. Heckman and Smith (1995) showed that the average outcome for the treated group under the condition of nontreatment is not the same as the average outcome of the nontreated group,
precisely E(YO|W = 1) # E(YO|W = 0), because of selection bias. 4. Rubin extended the counterfactual framework to a more general case—that is, allowing the framework to be applicable to observational studies. Unlike a randomized experiment, an observational study involves complicated
situations that require a more rigorous approach to data analysis. Less rigorous approaches are open to criticism; for instance, Sobel (1996) criticized the common practice in sociology that uses a dummy variable (i.e., treatment vs. nontreatment) to evaluate the treatment effect in a
regression model (or a regression-type model such as a path analysis or structural equation model) using survey data. As shown in the next section, the primary problem of such an approach is that the dummy treatment variable is specified by these models as exogenous, but in fact it is
not. According to Sobel (2005), 59 The incorporation of Neyman’s notation into the modern literature on causal inference is due to Rubin (1974, 1977, 1978, 1980b), who, using this notation, saw the applicability of the work from the statistical literature on experimental design to observational
studies and gave explicit consideration to the key role of the treatment assignment mechanism in causal inference, thereby extending this work to observational studies. To be sure, previous workers in statistics and economics (and elsewhere) understood well in a less formal way the
problems of making causal inferences in observational studies where respondents selected themselves into treatment groups, as evidenced, for example, by Cochran’s work on matching and Heckman’s work on sample selection bias. But Rubin’s work was a critical breakthrough. (p. 100) 5.
In the above exposition, we used the most common and convenient statistic (i.e., the mean) to express various counterfactuals and the ways in which counterfactuals are approximated. The average causal effect tis an average, and as such, according to Holland (1986, p. 949), “enjoys all
of the advantages and disadvantages of averages.” One such disadvantage is the insensitivity of an average to the variability of the causal effect. If the variability in individual causal effects (Yi|Wi = 1) — (Yi|Wi = 0) is large over all units, then 1 = E(Y1|W = 1) - E(YO|W = 0) may not well
represent the causal effect of a specific unit (say, u0). “If uO is the unit of interest, then T may be irrelevant, no matter how carefully we estimate it!” (Holland, 1986, p. 949). This important point is expanded in Sections 2.7 and 2.8, but we want to emphasize that the variability of the treatment
effect at the individual level, or violation of an assumption about a constant treatment effect across individuals, can make the estimation of average treatment effects biased; therefore, it is important to distinguish among various types of treatment effects. In short, different statistical
approaches employ counterfactuals of different groups to estimate different types of treatment effects. 6. Another limitation of using an average lies in the statistical properties of means. Although means are conventional, distributions of treatment parameters are also of considerable interest
(Heckman, 2005, p. 20). In several articles, Heckman and his colleagues (Heckman, 2005; Heckman, Ichimura, & Todd, 1997; Heckman et al., 1999; Heckman, Smith, & Clements, 1997) have discussed the limitation of reliance on means (e.g., disruption bias leading to changed outcomes
or the Hawthorne effect) and have suggested using other summary measures of the distribution of counterfactuals such as (a) the proportion of participants in Program A who benefit from the program relative to some alternative B, (b) the proportion of the total population that benefits from
Program B compared with Program A, (c) selected quantiles of the impact 60 distribution, and (d) the distribution of gains at selected base state values. 7. The Neyman-Rubin framework expressed in Equation 2.1 is the basic model. However, there are variants that can accommodate more
complicated situations. For instance, Rosenbaum (2002b) developed a counterfactual model in which stratification is present and where s stands for the sth stratum: Under this formulation, Equation 2.1 is the simplest case where s equals 1, or stratification is absent.5 8. The Neyman-Rubin
counterfactual framework is mainly a useful tool for the statistical exploration of causal effects. However, by no means does this framework exclude the importance of using substantive theories to guide causal inferences. Identifying an appropriate set of covariates and choosing an
appropriate model for data analysis are primarily tasks of developing theories based on prior studies in the substantive area. As Cochran (1965) argued, When summarizing the results of a study that shows an association consistent with a causal hypothesis, the investigator should always
list and discuss all alternative explanations of his results (including different hypotheses and biases in the results) that occur to him. (sec. 5) Dating from Fisher’s work, statisticians have long acknowledged the importance of having a good theory of the treatment assignment mechanism
(Sobel, 2005). Rosenbaum (2005) emphasized the importance of using theory in observational studies and encouraged evaluators to “be specific’ on which variables to match and which variables to control using substantive theories. Thus, similar to all scientific inquiries, the counterfactual
framework is reliable only under the guidance of appropriate theories and substantive knowledge. 2.3 THE IGNORABLE TREATMENT ASSIGNMENT ASSUMPTION By thinking of the central challenge of all evaluations as estimating the missing outcomes for participants—each of whom is
missing an observed outcome for either the treatment or nontreatment condition—the evaluation problem becomes a missing data issue. Consider the standard estimator of the average treatment effect: t= E (Y1|W = 1) — E(YO|W = 0). Many sources of error contribute to the bias of 1. It is for
this reason that the researcher has to make a few fundamental assumptions to apply the Neyman-Rubin counterfactual model to actual evaluations. One such assumption is the ignorable treatment assignment 61 assumption (Rosenbaum & Rubin, 1983). In the literature, this assumption is
sometimes presented as part of the SUTVA (e.g., Rubin, 1986); however, we treat it as a separate assumption because of its importance. The ignorable treatment assignment is fundamental to the evaluation of treatment effects, particularly in the econometric literature. Our discussion
follows this tradition. The assumption can be expressed as The assumption says that conditional on covariates X, the assignment of study participants to binary treatment conditions (i.e., treatment vs. nontreatment) is independent of the outcome of nontreatment (YO) and the outcome of
treatment (Y1). A variety of terms have emerged to describe this assumption: unconfoundedness (Rosenbaum & Rubin, 1983), selection on observables (Barnow, Cain, & Goldberger, 1980), conditional independence (Lechner, 1999), and exogeneity (Imbens, 2004). These terms can be
used interchangeably to denote the key idea that assignment to one condition or another is independent of the potential outcomes if observable covariates are held constant. The researcher conducting a randomized experiment can be reasonably confident that the ignorable treatment
assignment assumption holds because randomization typically balances the data between the treated and control groups and makes the treatment assignment independent of the outcomes under the two conditions (Rosenbaum, 2002b; Rosenbaum & Rubin, 1983). However, the ignorable
treatment assignment assumption is often violated in quasiexperimental designs and in observational studies because the creation of a comparison group follows a natural process that confounds group assignment with outcomes. Thus, the researcher’s first task in any evaluation is to check
the tenability of the independence between the treatment assignment and outcomes under different conditions. A widely employed approach to this problem is to conduct bivariate analysis using the dichotomous treatment variable (W) as one and each independent variable available to the
analyst (i.e., each variable in the matrix X, one at a time) as another. Chi-square tests may be applied to the case w here X is a categorical variable, and an independent samples t test or Wilcoxon rank sum (Mann-Whitney) test may be applied to the case where X is a continuous variable.
Whenever the null hypothesis is rejected as showing the existence of a significant difference between the treated and nontreated groups on the variable under examination, the researcher may conclude that there is a correlation between treatment assignment and outcome that is
conditional on an observed covariate; therefore, the treatment assignment is not ignorable, and taking remedial measures to correct the violation is warranted. Although this method is popular, it is worth noting that Rosenbaum (2002b) cautioned that no statistical evidence exists that
supports the validity of this convention, because 62 this assumption is basically untestable. To demonstrate that the ignorable treatment assignment is nothing more than the same assumption of ordinary least squares (OLS) regression about the independence of the error term from an
independent variable, we present evidence of the associative relation between the two assumptions. In the OLS context, the assumption is also known as contemporaneous independence of the error term from the independent variable or, more generally, exogeneity. To analyze
observational data, an OLS regression model using a dichotomous indicator may not be the best choice. To understand this problem, consider the where Wi is a dichotomous following OLS regression model: variable indicating treatment, and Xi is the vector of independent variables for case
I. In observational data, because researchers have no control over the assignment of treatment conditions, W is often highly correlated with Y. The use of statistical controls—a common technique in the social and health sciences— involves a modeling process that attempts to extract the
independent contribution of explanatory variables (i.e., the vector X) to the outcome Y to determine the net effect of 1. When the ignorable treatment assignment assumption is violated and the correlation between W and e is not equal to 0, the OLS estimator of treatment effect 1 is biased
and inconsistent. More formally, under this condition, there are three problems associated with the OLS estimator. First, when the treatment assignment is not ignorable, the use of the dummy variable W leads to endogeneity bias. In the above regression equation, the dummy variable W is
conceptualized as an exogenous variable. In fact, it is a dummy endogenous variable. The nonignorable treatment assignment implies a mechanism of selection; that is, there are other factors determining W. W is merely an observed variable that is determined by a latent variable W in
such away that W =1, if W% > C, and W = 0, otherwise, where C is a constant reflecting a cutoff value of utility function. Factors determining W should be explicitly taken into consideration in the modeling process. Conceptualizing W as a dummy endogenous variable motivated Heckman



(1978, 1979) to develop the sample selection model and Maddala (1983) to develop the treatment effect model. Both models attempt to correct for the endogeneity bias. See Chapter 4 for a discussion of these models. Second, the presence of the endogeneity problem (i.e., the independent
variable is not exogenous and is correlated with the error term of the regression) leads to a biased and inconsistent estimation of the regression coefficient. Our demonstration of the adverse consequence follows Berk (2004). For ease of exposition, assume all variables are mean centered,
and there is one predictor in the model: 63 The least squares estimate of is Substituting Equation 2.8 into Equation 2.9 and simplifying, the result is If x and e are correlated, the expected value for the far right-hand term will be nonzero, and the numerator will not go to zero as the sample
size increases without limit. The least squares estimate then will be biased and inconsistent. The presence of a nonzero correlation between x and e may be due to one or more of the following reasons: (a) the result of random measurement error in x, (b) one or more omitted variables
correlated with x and y, (c) the incorrect functional form, and (d) a number of other problems (Berk, 2004, used with permission). This problem is also known as asymptotical bias, which is a term that is analogous to inconsistency. Kennedy (2003) explained that when contemporaneous
correlation is present, “the OLS procedure, in assigning ‘credit’ to regressors for explaining variation in the dependent variable, assigns, in error, some of the regressors with which that disturbance is contemporaneously correlated” (p. 158). Suppose that the correlation between the
independent variable and the error term is positive. When the error is higher, the dependent variable is also higher, and owing to the correlation between the error and the independent variable, the independent variable is likely to be higher, which implies that too much credit for making the
dependent variable higher is likely to be assigned to the independent variable. Figure 2.1 illustrates this scenario. If the error term and the independent variable are positively correlated, negative values of the error will tend to correspond to low values of the independent variable, and positive
values of the error will tend to correspond to high values of the independent variable, which will create data patterns similar to that shown in the figure. The OLS estimating line clearly overestimates the slope of the true relationship. Obviously, the estimating line in this hypothetical example
provides a much better fit to the sample data than does the true relationship, which causes the variance of the error term to be underestimated. Finally, in observational studies, because researchers have no control over the assignment of treatment conditions, W is often correlated with Y. A
statistical control is a modeling process that attempts to extract the independent contribution of explanatory variables to the outcome to determine the net effect of 1. Although the researcher aims to control for all important variables by using 64 a well-specified matrix X, the omission of
important controls often occurs and results in a specification error. The consequence of omitting relevant variables is a biased estimation of the regression coefficient. We follow Greene (2003, pp. 148-149) to show why this is the case. Suppose that a correctly specified regression model
would be where the two parts of X have K1 and K2 columns, respectively. If we regress y on X1 without including X2, then the estimator is Figure 2.1 Positive Contemporaneous Correlation Source: Kennedy (2003), p.158. Copyright © 2003 Massachusetts Institute of Technology. Reprinted
by permission of The MIT Press. Taking the expectation, we see that unless well-known result is the omitted variable formula is biased. The where Each column of the K1 x K2 matrix P1.2 is the column of slopes in the least squares regression of the corresponding column of X2 on the
column of X1. When the ignorable treatment assignment assumption is violated, remedial 65 action is needed. The popular use of statistical controls with OLS regression is a choice that involves many risks. In Section 2.5, we review alternative approaches that have been developed to
correct for biases under the condition of nonignorable assignment (e.g., the Heckman sample selection model directly modeling the endogenous dummy treatment condition) and approaches that relax the fundamental assumption to focus on a special type of treatment effect (e.g., average
treatment effect for the treated rather than sample average treatment effect). 2.4 THE STABLE UNIT TREATMENT VALUE ASSUMPTION T h e stable unit treatment value assumption (SUTVA) was labeled and formally presented by Rubin in 1980. Rubin (1986) later extended this
assumption, arguing that it plays a key role in deciding which questions are adequately formulated to have causal answers. Only under SUTVA is the representation of outcomes by the Neyman-Rubin counterfactual model adequate. Formally, consider the situation with N units indexed by i
=1,...,N; Ttreatments indexed by w=1, ..., T; and outcome variable Y, whose possible values are represented by Yiw(w =1, ..., T;i=1,..., N).6 SUTVA is simply the a priori assumption that the value of Y for unit i when exposed to treatment w will be the same no matter what
mechanism is used to assign treatment w to unit i and no matter what treatments the other units receive, and this holds foralli=1,...,Nandallw=1, ..., T. Asit turns out, SUTVA basically imposes exclusive restrictions. Heckman (2005, p. 11) interprets these exclusive restrictions as
the following two circumstances: (1) SUTVA rules out social interactions and general equilibrium effects, and (2) SUTVA rules out any effect of the assignment mechanism on potential outcomes. We previously examined the importance of the second restriction (ignorable treatment
assignment) in Section 2.3. The following section explains the importance of the first restriction and describes the conditions under which the assumption is violated. According to Rubin (1986), SUTVA is violated when unrepresented versions of treatment exist (i.e., Yiw depends on which
version of treatment w is received) or when there is interference between units (i.e., Yiw depends on whether i’ received treatment w or w', where i # i’ and w # w'). The classic example of violation of SUTVA is the analysis of treatment effects in agricultural research, such as rainfall that
surreptitiously carries fertilizer from a treated plot to an adjacent untreated plot. In social behavioral evaluations, SUTVA is violated when a treatment alters social or environmental conditions that, in turn, alter 66 potential outcomes. Winship and Morgan (1999) illustrated this idea by
describing the impact of a large job training program on local labor markets: Consider the case where a large job training program is offered in a metropolitan area with a competitive labor market. As the supply of graduates from the program increases, the wage that employers will be willing
to pay graduates of the program will decrease. When such complex effects are present, the powerful simplicity of the counterfactual framework vanishes. (p. 663) SUTVA is both an assumption that facilitates investigation or estimation of counterfactuals and a conceptual perspective that
underscores the importance of analyzing differential treatment effects with appropriate estimators. We return to SUTVA as a conceptual perspective in Section 2.7. It is noteworthy that Heckman and his colleagues (Heckman et al., 1999) treated SUTVA as a strong assumption and
presented evidence against the assumption. The limitations imposed by the strong assumption may be overcome by relaxed assumptions (Heckman & Vytlacil, 2005). 2.5 METHODS FOR ESTIMATING TREATMENT EFFECTS As previously discussed in Section 2.3, violating the ignorable
treatment assignment assumption has adverse consequences. Indeed, when treatment assignment is not ignorable, the OLS regression estimate of treatment effect is likely to be biased and inefficient. Furthermore, the consequences are worse when important predictors are omitted and in
an observational study when hidden selection bias is present (Rosenbaum, 2002b). What can be done? This question served as the original motivation for statisticians and econometricians to develop new methods for program evaluation. As a part of this work, new analytic models have
been designed for observational studies and, more generally, for nonexperimental approaches that may be used when treatment assignment is ignorable. The growing consensus among statisticians and econometricians is that OLS regression or simple covariance control is no longer the
method of choice, although this statement runs the risk of oversimplification. 2.5.1 Design of Observational Study Under the counterfactual framework, violations of the ignorable treatment assignment and SUTVA assumptions may be viewed as failures in conducting a randomized
experiment, although the failures may cover a range of situations, such as failure to conduct an experiment in the first place, broken randomization 67 due to treatment noncompliance or randomized studies that suffer from attrition, or the use of an inadequate number of units in
randomization such that randomization cannot fully balance data. To correct for these violations, researchers need to have a sound design. Choosing an appropriate method for data analysis should be guided by the research design. Numerous scholars underscore the importance of having
a good design for observational studies. Indeed, Rosenbaum (2010) labeled his book as the Design of Observational Studies to emphasize the relevance and importance of design in the entire business of conducting observational research and evaluation. And, one of Rubin's best-known
articles, published in 2008, is titled “For Objective Causal Inference, Design Trumps Analysis.” From the perspective of statistical tradition, observational studies aim to accomplish the same goal of causal inference as randomized experiments; therefore, the first design issue is to view
observational studies as approximations of randomized experiments. Rubin (2008) argued, “A crucial idea when trying to estimate causal effects from an observational dataset is to conceptualize the observational dataset as having arisen from a complex randomized experiment, where the
results used to assign the treatment conditions have been lost and must be reconstructed” (p. 815). In this context, addressing the violation of the unconfoundedness assumption is analogous to an effort to reconstruct and balance the data. Specifically, there are six important tasks involved
in the design of observational studies: (1) conceptualize the observational study as having arisen from a complex randomized experiment, (2) understand what was the hypothetical randomized experiment that led to the observed data set, (3) evaluate whether the sample sizes in the data
set are adequate, (4) understand who are the decision makers for treatment assignment and what measurements were available to them, (5) examine whether key covariates are measured well, and (6) evaluate whether balance can be achieved on key covariates (Rubin, 2008). 2.5.2 The
Seven Models The seven models presented in this book relax the nonignorable treatment assignment assumption: (a) by considering analytic approaches that do not rely on strong assumptions requiring distributional and functional forms, (b) by rebalancing assigned conditions so that they
become more akin to data generated by randomization, and (c) by estimating counterfactuals that represent different treatment effects of interest by using a variety of statistics (i.e., means, proportions). In estimating counterfactuals, the seven models have the following core features: 1.
Heckman’s sample selection model (1978, 1979) and its revision on 68 estimating treatment effects (Maddala, 1983). The crucial features of these models are (a) an explicit modeling of the structure of selection, (b) a switching regression that seeks exogenous factors determining the switch
of study participants between two regimes (i.e., the treated and nontreated regimes), and (c) the use of the conditional probability of receiving treatment in the estimation of treatment effects. 2. Propensity score matching model (Rosenbaum, 2002b; Rosenbaum & Rubin, 1983). The
fundamental feature of the propensity score matching model is that it balances data through resampling or matching nontreated participants to treated ones on probabilities of receiving treatment (i.e., the propensity scores) and permits follow-up bivariate or multivariate analysis (e.g.,
stratified analysis of outcomes within quintiles of propensity scores, OLS regression, survival modeling, structural equation modeling, hierarchical linear modeling) as would be performed on a sample generated by a randomized experiment. Reducing the dimensionality of covariates to a
one-dimensional score—the propensity—is a substantial contribution that leverages matching. From this perspective, the estimation of propensity scores and use of propensity score matching is the “most basic ingredient of an unconfounded assignment mechanism” (Rubin, 2008, p. 813).
Addressing the reduction of sample sizes from greedy (e.g., 1:1) matching, an optimal matching procedure using network flow theory can retain the original sample size where the counterfactuals are based on an optimally full matched sample or optimally matched sample using variable
ratios of treated to untreated participants. Estimation of counterfactuals may employ multilevel modeling procedures to account for clustering effects that exist in both the model estimating the propensity scores and the model for outcome analysis. 3. Propensity score subclassification model
(Rosenbaum & Rubin, 1983, 1984). Extending the classic work of Cochran (1968), Rosenbaum and Rubin proved that balancing on propensity scores represents all available covariates and yields a one-dimensional score through which one can successfully perform subclassification. The
procedure involves estimating the counterfactual for each subclass obtained through propensity score subclassification, aggregating counterfactuals from all subclasses to estimate the average treatment effect for the entire sample and the variance associated with it, and finally testing
whether the treatment effect for the sample is statistically significant. Structural equation modeling (SEM) may be performed in conjunction with subclassification, and a test of subclass differences of key SEM parameters is often a built-in procedure in this type of analyses. 4. Propensity
score weighting model (Hirano & Imbens, 2001; Hirano et al., 2003; McCaffrey et al. 2004). The key feature of this method is the treatment of estimated propensity scores as sampling weights to perform a weighted outcome 69 analysis. Counterfactuals are estimated through a regression or
regression-type model, and the control of selection biases is achieved through weighting, rather than a direct inclusion of covariates as independent variables in a regression model. 5. Matching estimators model (Abadie & Imbens, 2002, 2006). The key feature of this method is the direct
imputation of counterfactuals for both treated and nontreated participants by using a vector norm with a positive definite matrix (i.e., the Mahalanobis metric or the inverse of sample variance matrix). Various types of treatment effects may be estimated: (a) the sample average treatment
effect (SATE), (b) the sample average treatment effect for the treated (SATT), (c) the sample average treatment effect for the controls (SATC), and (d) the equivalent effects for the population (i.e., population average treatment effect [PATE], population average treatment effect for the
treated [PATT], and population average treatment effect for the controls [PATC]). Standard errors corresponding to these sample average treatment effects are developed and used in significance tests. 6. Propensity score analysis with nonparametric regression model (Heckman, Ichimura,
& Todd, 1997, 1998). The critical feature of this method is the comparison of each treated participant to all nontreated participants based on distances between propensity scores. A nonparametric regression such as local linear matching is used to produce an estimate of the average
treatment effect for the treatment group. By applying the method to data at two time points, this approach estimates the average treatment effect for the treated in a dynamic fashion, known as difference-in-differences. 7. Propensity score analysis of categorical or continuous treatments
model (Hirano & Imbens, 2004; Imbens, 2000; Joffe & Rosenbaum, 1999). This class of methods is an extension of propensity score analysis of binary treatment conditions to multiple treatment levels, where the researchers are primarily interested in the effects of treatment dosage.
Counterfactuals are estimated either through a single scalar of propensity scores (Joffe & Rosenbaum, 1999) or through estimating generalized propensity scores (GPS). The GPS (Hirano & Imbens, 2004) approach involves the following steps: estimating GPS using a maximum likelihood
regression, estimating the conditional expectation of the outcome given the treatment and GPS, and estimating the dose-response function to discern treatment effects as well as their 95% confidence bands. It is worth noting that all the models or methods were not originally developed to
correct for nonignorable treatment assignment. Quite the contrary, some of these models still assume that treatment assignment is strongly ignorable. According to Rosenbaum and Rubin (1983), showing “strong 70 ignorability” allows analysts to evaluate a nonrandomized experiment as if it
had come from a randomized experiment. However, in many evaluations, this assumption cannot be justified. Notwithstanding, in most studies, we wish to conduct analyses under the assumption of ignorability (Abadie, Drukker, Herr, & Imbens, p. 292). Instead of correcting for the violation
of the assumption about strongly ignorable treatment assignment, the corrective approaches (i.e., the methods covered in this book) take various measures to control selection bias. These include, for example, (a) relaxation of the assumption (e.g., instead of assuming conditional
independence or full independence [Heckman, Ichimura, & Todd, 1997, 1998] or assuming mean independence by only requiring that conditional on covariates, the mean outcome under control condition for the treated cases be equal to the mean outcome under the treated condition for the
controls), (b) modeling the treatment assignment process directly by treating the dummy treatment condition as an endogenous variable and using a two-step estimating procedure (i.e., the Heckman sample selection model), (c) developing a onedimensional propensity score so that biases
due to observed covariates can be removed by conditioning solely on the propensity score (i.e., Rosenbaum and Rubin’s propensity score matching model and Heckman and colleagues’ propensity score analysis with nonparametric regression), and (d) employing bias-corrected matching
with a robust variance estimator to balance covariates between treatment conditions (i.e., the matching estimators). Because of these features, the methods we describe offer advantages over OLS regression, regression-type models, and other simple corrective methods. Rapidly being
developed and refined, propensity score methods are showing usefulness when compared with traditional approaches. Parenthetically, most of these methods correct for overt selection bias only. The sample selection and treatment effect models are exceptions that may partially correct for
hidden selections. But, on balance, the models do nothing to directly correct for hidden selection bias. It is for this reason that the randomized experiment remains a gold standard. When properly implemented, it corrects for both overt and hidden selection bias. 2.5.3 Other Balancing
Methods We chose to include seven models in this text because they are robust, efficient, and effective in addressing questions that arise commonly in social behavioral and health evaluations. Although the choice of models is based on our own experience, many applications can be found
in biostatistics, business, economics, education, epidemiology, medicine, nursing, psychology, public health, social work, and sociology. There are certainly other models that accomplish the same goal of balancing data. To offer a larger perspective, we provide a brief review of additional
models. 71 Imbens (2004) summarized five groups of models that serve the common goal of estimating average treatment effects: (1) regression estimators that rely on consistent estimation of key regression functions; (2) matching estimators that compare outcomes across pairs of
matched treated and control units, with each unit matched to a fixed number of observations in the opposite treatment; (3) estimators characterized by a central role of the propensity score (i.e., there are four leading approaches in this category: weighting by the reciprocal of the propensity
score, blocking on the propensity score, regression on the propensity score, and matching on the propensity score); (4) estimators that rely on a combination of these methods, typically combining regression with one of its alternatives; and (5) Bayesian approaches to inference for average
treatment effects. In addition, Winship and Morgan (1999) and Morgan and Winship (2007) reviewed five methods, including research designs that are intended to improve causal interpretation in the context of nonignorable treatment assignment. These include (1) regression discontinuity
designs, (2) instrumental variables (IV) approaches, (3) interrupted time-series designs, (4) differential rate of growth models, and (5) analysis of covariance models. Separate from mainstream propensity score models and advances in design, other approaches to causal inference warrant
attention. James Robins, for example, developed analytic methods known as marginal structural models that are appropriate for drawing causal inferences from complex observational and randomized studies with time-varying exposure of treatment (Robins, 1999a, 1999b; Robins, Hernn, &
Brumback, 2000). Judea Pearl (2000) and others (Glymour & Cooper, 1999; Spirtes, Glymour, & Scheines, 1993) developed a formal framework to determine which of many conditional distributions could be estimated from data using an approach known as directed acyclic graphs. Of these
models, the IV approach shares common features with some models discussed in this book, particularly, the switching regression model described in Chapter 4. The IV approach is among the earliest attempts in econometrics to address the endogeneity bias problem, and it has been shown
to be useful in estimating treatment effects. Because of its similarities with approaches discussed in this book as well as its popularity in correcting the endogeneity problem when randomized experimentation is not feasible, we give it a detailed review. We also briefly describe the basic ideas
of regression discontinuity designs so that readers are aware of how the same analytic issues can be addressed by methods other than propensity score analysis. We do not intend to provide a lengthy treatment of either of these two methods because they are not based on propensity
scores. 2.5.4 Instrumental Variables Estimator After OLS regression, the instrumental variable (IV) approach is perhaps the 72 second most widely practiced method in economic research (Wooldridge, 2002). As mentioned earlier, selection bias is a problem of endogeneity in regression
analysis. That is, the lack of a randomization mechanism causes the residual term in regression to be correlated with one or more independent variables. To solve the problem, researchers may find an observed variable z1 that satisfies the following two conditions: z1 is not correlated with
the residual term, but z1 is highly correlated with the independent variable that causes endogeneity. If z1 meets these two conditions, then z1 is called an instrumental variable. The instrument z1 may not necessarily be a single variable and can be a vector that involves two or more
variables. Under this condition, researchers can use a two-stage least squares estimator to estimate the regression coefficients and treatment effects. Together, the method using either a single or a vector of instrumental variables is called the instrumental variables estimator. Following
Wooldridge (2002), we describe the basic setup of IV next. Formally, consider a linear population model: Note that in this model, xK is correlated with € (i.e., Cov(xK, €) # 0), and xK is potentially endogenous. To facilitate the discussion, we think of € as containing one omitted variable that is
uncorrelated with all explanatory variables except xK. In the practice of 1V, researchers could consider a set of omitted variables. Under such a condition, the model would use multiple instruments. All omitted variables meeting the required conditions are called multiple instruments. To solve
the problem of endogeneity bias, the analyst needs to find an observed variable, z1, that satisfies the following two conditions: (1) z1 is uncorrelated with €, or Cov(z1, €) = 0, and (2) z1 is correlated with xk , meaning that the linear projection of xk onto all exogenous variables exists. This is
otherwise stated as where, by definition, E(rK) = 0 and rK is uncorrelated with x1, x2, . . . and xK — 1, z1; the key assumption is that the coefficient on z1 is nonzero, or 8 # 0. Next, consider the model (i.e., Equation 2.15) where the constant is absorbed into x so that x = (1, x2, . . ., xk).
Write the 1 x K vector of all exogenous variables as z = (1, x2, ..., XK =1, z1). The 73 preceding two conditions about z1 imply the K population orthogonality conditions, or Multiplying Equation 2.16 through by z', taking expectations, and using Equation 2.17, we have where E(z'x) is K x K
and E(z'y) is K x 1. Equation 2.18 represents a system of K linear equations in the K unknowns 31, . . . , BK. This system has a unique solution if and only if the K x K matrix E(z'x) has full rank, or the rank of E(z'x) is K. Under this condition, the solution to 3 is Thus, given a random sample
{(xi,yi,zi):i=1,2,..., N} from the population, the analyst can obtain the instrumental variables estimator of 3 as The above model (2.19) specifies one instrumental variable, z1. In practice, the analyst may have more than one instrumental variable for xk, such as M instruments of xk (i.e.,
z1, ..., zM). Define the vector of exogenous variablesas z = (1, x1, x2, .. .,xK -1, z1, ..., zM). Estimated regression coefficients for x1, x2, .. . , XK — 1, xK can be obtained through the following two stages: (1) obtain the fitted values of from the regression xK on x1, x2, ..., xK -1, z1,
..., zM, which is called the first-stage regression, and (2) run the regression y on x1, x2, .. ., XK — 1, to obtain estimated regression coefficients, which is called the second-stage regression. For each observation i, define the vectori =1, 2, ... N. Using from the second-stage regression
gives the IV estimator where unity is also the first element of xi. For details of the IV model with multiple instruments, readers are referred to Wooldridge (2002, pp. 90-92). The two-stage least squares estimator under certain assumptions is the most efficient IV estimator. Wooldridge (2002,
pp. 92-97) gives a formal treatment to this estimator and provides proofs for important properties, including consistency, asymptotic normality, and asymptotic efficiency, of the two-stage 74 least squares estimator. In practice, finding instrumental variables can be challenging. It is often
difficult to find an instrumental variable z1 (or M instrumental variables z1, . . . , zM) that meets the two conditions required by the procedure; namely, the instrument is not correlated with the residual of the regression model that suffers from endogeneity but it is highly correlated with the
independent variable that causes endogeneity. The application of the IV approach requires a thorough understanding of the study phenomenon; processes generating all study variables, including exogenous variables that produce endogeneity problems; independent variables used in the
regression model; variables that are not used in the regression; and the outcome variable and its relationships with the independent variables used and not used in the regression. In essence, the IV model requires that researchers have an excellent understanding of the substantive theories
as well as the processes generating the data. Although finding good instruments is challenging, innovative studies have employed interesting Vs and applied the approach to address challenging research questions. For instance, in a study on the effects of education on wages, the residual
of the regression equation is correlated with education because it contains omitted ability. Angrist and Krueger (1991) used a dichotomous variable indicating whether a study subject was born in the first quarter of the birth year (= 1 if the subject was born in the first quarter and 0 otherwise).
They argued that compulsory school attendance laws induce a relationship between education and the quarter of birth: At least some people are forced, by law, to attend school longer than they otherwise would. The birth quarter in this context is obviously random and not correlated with
other omitted variables of the regression model. Another well-known example of an IV is the study of the effect of serving in the Vietham War on the earnings of men (Angrist, 1990). Prior research showed that participation in the military is not necessarily exogenous to unobserved factors
that affect earnings even after controlling for education, nonmilitary experience, and so on. Angrist (1990) found that men with a lower draft lottery number were more likely to serve in the military during the Vietnam War, and hence, he used the draft lottery number, initiated in 1969, as an
instrument of the binary Vietnam War participation indicator. A similar idea (i.e., of using lottery number as an instrument for serving in the army during the Vietnam War) was employed in a well-known study estimating the effect of veteran status on mortality (Angrist et al., 1996). The study
employed an IV to estimate local average treatment effect. Angrist et al. (1996) showed how the IV estimand can be given a precise and straightforward causal interpretation in the potential outcomes framework, despite nonignorability of treatment received. This interpretation avoids
drawbacks of the standard 75 structural equation framework, such as constant effects for all units, and delineates critical assumptions needed for a causal interpretation. The IV approach provides an alternative to a more conventional intention-to-treat analysis, which focuses solely on the
average causal effect of assignment on the outcome. (p. 444) Other studies that have chosen instrumental variables cleverly and innovatively include the Hoxby (1994) study that used topographic features— natural boundaries created by rivers—as the IV for the concentration of public
schools within a school district, where the author was interested in estimating the effects of competition among public schools on student performance; the Evans and Schwab (1995) study examining the effects of attending a Catholic high school on various outcomes, in which the authors
used whether a student was Catholic as the IV for attending a Catholic high school; and the Card (1995a) study on the effects of schooling on wages, where the author used a dummy variable that indicated whether a man grew up in the vicinity of a 4-year college as an instrumental variable
for years of schooling. Wooldridge (2002, pp. 87—-89) provides an excellent review and summary of these studies. It's worth noting that just like the propensity score approach, these IV studies are also controversial and have triggered debates and criticisms. Opponents primarily challenge
the problem of a weak correlation between the instruments and the endogenous explanatory variable in these studies (e.g., Bound, Jaeger, & Baker, 1995; Rothstein, 2007). The debate regarding the advantages and disadvantages of the IV approach is ongoing. In addition to empirical
challenges in finding good instruments, Wooldridge (2002) finds two potential pitfalls with the two-stage least squares estimator: (1) Unlike OLS under a zero conditional mean assumption, IV methods are never unbiased when at least one explanatory variable is endogenous in the model,
and (2) the standard errors estimated by the two-stage least squares or other IV estimators have a tendency to be “large,” which may lead to insignificant coefficients or standard errors that are much larger than those estimated by OLS. Heckman (1997) examined the use of the IV approach
to estimate the mean effect of treatment on the treated, the mean effect of treatment on randomly selected persons, and the local average treatment effect. He paid special attention to which economic questions were addressed by these parameters and concluded that when responses to
treatment vary, the standard argument justifying the use of instrumental variables fails unless person-specific responses to treatment do not influence the decision to participate in the program being evaluated. This condition requires that participant gains from a program—which cannot be
predicted from variables in outcome equations— have no influence on the participation decisions of program participants. 2.5.5 Regression Discontinuity Designs 76 Regression discontinuity designs (RDDs) have also drawn the attention of a growing number of researchers. These designs
have been increasingly employed in evaluation studies. RDD is a quasi-experimental approach that evaluates the treatment effect by assigning a cutoff or threshold value above or below which a treatment is assigned. By comparing observations lying closely on either side of the threshold, it
is possible to estimate the local treatment effect. The method is similar to an interrupted time-series design that compares outcomes before and after an intervention, except that the treatment in RDD is a function of a variable other than time. The RDD method was first proposed by
Thistlewaite and Campbell (1960) when they analyzed the effect of student scholarships on career aspirations. In practice, researchers using RDD may distinguish between two general settings: the sharp and the fuzzy regression discontinuity designs. The estimation of treatment effects
with both designs can be obtained using a standard nonparametric regression approach such as lowess with an appropriately specified kernel function and bandwidth (Imbens & Lemieux, 2008). Discontinuity designs have two assumptions: (1) Treatment assignment is equally as good as
random selection at the threshold for treatment, and (2) individuals are sampled independently. Violations of these assumptions lead to biased estimation of treatment effects. The most severe problem with RDD is misspecification of the functional form of the relation between treatment and
outcome. Specifically, users run the risk of misinterpreting a nonlinear relationship between treatment and outcome as a discontinuity. Counterfactual values must be extrapolated from observed data below and above the application of the treatment. If the assumptions built into the RDD of
extrapolation are unreasonable, then causal estimates are incorrect (Morgan & Winship, 2007). Propensity score methods fall within the broad class of procedures being developed for use when random assignment is not possible or is compromised. These procedures include IV analysis
and regression discontinuity designs. They include also directed acyclic graphs and marginal structural models. In the remaining chapters of the book, we describe seven propensity score models that have immediate applications in the social and health sciences and for which software is
generally available. We focus on in vivo application more than on theory and proofs. We turn now to basic ideas underlying all seven models. 2.6 THE UNDERLYING LOGIC OF STATISTICAL INFERENCE When a treatment is found to be effective (or not effective), evaluators often want to
generalize the finding to the population represented by the sample. They ask whether or not the treatment effect is zero (i.e., perform a nondirectional 77 test) or is greater (less) than some cutoff value (i.e., perform a directional test) in the population. This is commonly known as statistical
inference, a process of estimating unknown population parameters from known sample statistics. Typically, such an inference involves the calculation of a standard error to conduct a hypothesis test or to estimate a confidence interval. The statistical inference of treatment effects stems from
the tradition of randomized experimentation developed by Sir Ronald Fisher (1935/1971). The procedure is called a permutation test (also known as a randomization test, a re-randomization test, or an exact test) in that it makes a series of assumptions about the sample. When generalizing,
researchers often find that one or more of these assumptions are violated, and thus, they have to develop strategies for statistical inference that deal with estimation when assumptions are differentially tenable. In this section, we review the underlying logic of statistical inference for both
randomized experiments and observational studies. We argue that much of the statistical inference in observational studies follows the logic of statistical inference for randomized experiments and that checking the tenability of assumptions embedded in permutation tests is crucial in
drawing statistical inferences for observational studies. Statistical inference always involves a comparison of sample statistics to statistics from a reference distribution. Although in testing treatment effects from a randomized experiment, researchers often employ a parametric distribution
(such as the normal distribution, the t distribution, and the F distribution) to perform a so-called parametric test, such a parametric distribution is not the reference distribution per se; rather, it is an approximation of a randomization distribution. Researchers use parametric distributions in
significance testing because these distributions “are approximations to randomization distributions—they are good approximations to the extent that they reproduce randomization inferences with reduced computational effort” (Rosenbaum, 2002a, p. 289). Strictly speaking, all statistical tests
performed in randomized experiments are nonparametric tests using randomization distributions as a reference. Permutation tests are based on reference distributions developed by calculating all possible values of a test statistic under rearrangements of the “labels” on the observed data
points. In other words, the method by which treatments are allocated to participants in an experimental design is mirrored in the analysis of that design. If the labels are exchangeable under the null hypothesis, then the resulting tests yield exact significance levels. Confidence intervals can
then be derived from the tests. Recall the permutation test of a British woman’s tea-tasting ability (see Section 1.3.1). To reject the null hypothesis that the taster has no ability in discriminating two kinds of tea (or, equivalently, testing the hypothesis that she makes a correct judgment by
accidentally guessing it right), the evaluator lists —of presenting eight all 70 possible ways—that is, 78 cups of tea with four cups adding the milk first and four cups adding the tea infusion first. That is, the evaluator builds a reference distribution of “11110000, 10101010, 00001111, .. .” that
contains 70 elements in the series. The inference is drawn on a basis of the following logic: The taster could guess (choose) any one outcome out of the 70 possible ones; the probability of guessing the right outcome is 1/70 = .0124, which is a low probability; thus, the null hypothesis of “no
ability” can be rejected at a statistical significance level of p < .05. If the definition of “true ability” is relaxed to allow for six exact agreements rather than eight exact agreements (i.e., six cups are selected in an order that matches the order of actual presentation), then there are a total of 17
possible ways to have six agreements, and the probability of falsely rejecting the null hypothesis increases to 17/70 = .243. The null hypothesis cannot be rejected at a .05 level. Under this relaxed definition, we should be more conservative, or ought to be more reluctant, in declaring that the
tea taster has true ability. All randomization tests listed in Section 1.3.2 (i.e., Fisher’s exact test, the Mantel-Haenszel test, McNemar’s test, Mantel's extension of the MantelHaenszel test, Wilcoxon'’s rank sum test, and the Hodges and Lehmann signed rank test) are permutation tests that
use randomization distributions as references and calculate all possible values of the test statistic to draw an inference. For this reason, this type of test is called nonparametric—it relies on distributions of all possible outcomes. In contrast, parametric tests employ parametric distributions as
references. To illustrate, we now follow Lehmann to show the underlying logic of statistical inference employed in Wilcoxon’s rank sum test (Lehmann, 2006). Wilcoxon’s rank sum test may be used to evaluate an outcome variable that takes many numerical values (i.e., an interval or ratio
variable). To evaluate treatment effects, N participants (patients, students, etc.) are divided at random into a group of size n that receives a treatment and a control group of size m that does not receive treatment. At the termination of the study, the participants are ranked according to some
response that measures treatment effectiveness. The null hypothesis of no treatment effect is rejected, and the superiority of the treatment is acknowledged, if in this ranking the n treated participants rank sufficiently high. The significance test calculates the statistical significance or
probability of falsely rejecting the null hypothesis based on the following where k is the sum of treated participants’ equation: ranks under the null hypothesis of no treatment effect, c is a prespecified value at which one wants to evaluate its probability, and w is the frequency (i.e., number of
times) of having value k under the null hypothesis. Precisely, if there were no treatment effect, then we could think of each participant’s rank as attached before assignments to treatment and control are made. Suppose we have a total of N = 5 participants; n = 3 are assigned to treatment,
and m = 2 are 79 assigned to control. Under the null hypothesis of no treatment effect, the five participants may be ranked as 1, 2, 3, 4, and 5. With five participants taken three at a time to form the treatment group, there are a total of 10 possible groupings of outcome ranks under the null
hypothesis: The rank sum of treated participants corresponding to each of the previous groups may look like the following: The probabilities of taking various rank sum values under the null hypothesis of no treatment effect are displayed below: For instance, under the null hypothesis of no
treatment effect, there are two possible ways to have a rank sum k = 10 (i.e., w = 2, when the treatment group is composed of treated participants whose ranks are [1, 4, 5] or is composed of treated participants whose ranks are [2, 3, 5]). Because there are a total of 10 possible ways to form
the treatment and control groups, the probability of having a rank sum k = 10 is 2/10 = .2. The above probabilities constitute the randomization distribution (i.e., the reference distribution) for this permutation test. From any real sample, one will observe a realized outcome that takes any one
of the seven k values (i.e., 6, 7, . . ., 12). Thus, a significance test of no treatment effect is to compare the observed rank sum from the sample data with the preceding distribution and check the probability of having such a rank sum from the reference. If the probability is small, then one can



reject the null hypothesis and conclude that in the population, the treatment effect is not equal to zero. Suppose that the intervention being evaluated is an educational program that aims to promote academic achievement. After implementing the intervention, the 80 program officer observes
that the three treated participants have academic test scores of 90, 95, 99, and the two control participants have test scores of 87, 89, respectively. Converting these outcome values to ranks, the three treated participants have ranks of 3, 4, 5, and the two control participants have ranks of 1,
2, respectively. Thus, the rank sum of the treated group observed from the sample is 3 + 4 + 5 = 12. This observed statistic is then compared with the reference distribution, and the probability of having a rank sum of 12 under the null hypothesis of no treatment effect is PH(k = 12) = .1.
Because this probability is small, we can reject the null hypothesis of no treatment effect at a significance level of .1 and conclude that the intervention may be effective in the population. Note that in the preceding illustration, we used very small numbers o f N, n, and m, and thus, the
statistical significance for this example cannot reach the conventional level of .05—the smallest probability in the distribution of this illustrating example is .1. In typical evaluations, N, n, and m tend to be larger, and a significance level of .05 can be attained. Wilcoxon’s rank sum test, as
described earlier, employs a randomization distribution based on the null hypothesis of no treatment effect. The exact probability of having a rank sum equal to a specific value is calculated, and such a calculation is based on all possible arrangements of N participants into n and m. The
probabilities of having all possible values of rank sum based on all possible arrangements of N participants into n and m are then calculated, and it is these probabilities that constitute the reference for significance testing. Comparing the observed rank sum of treated participants from a real
sample with the reference, evaluators draw a conclusion about whether they can reject the null hypothesis of no treatment effect at a statistically significant level. The earlier illustrations show a primary feature of statistical inference involving permutation tests: These tests build up a
distribution that exhausts all possible arrangements of study participants under a given N, n, and m and calculate all possible probabilities of having a particular outcome (e.qg., the specific rank sum of treated participants) under the null hypothesis of no treatment effect. This provides a
significance test for treatment in a realized sample. To make the statistical inference valid, we must ensure that the sample being evaluated meets certain assumptions. At the minimum, these assumptions include the following: (a) The sample is a real random sample from a welldefined
population, (b) each participant has a known probability of receiving treatment, (c) treatment assignment is strongly ignorable, (d) the individuallevel treatment effect (i.e., the difference between observed and potential outcomes ti = Y1i — YOi) is constant, (e) there is a stable unit treatment
value, and (f) probabilities of receiving treatment overlap between treated and control groups. When a randomized experiment in the strict form of Fisher’s definition is implemented, all the previous assumptions are met, and therefore, statistical 81 inference using permutation tests is valid.
Challenges arise when evaluators move from randomized experiments to observational studies, because in the latter case, one or more of the preceding assumptions are not tenable. So what is the underlying logic of statistical inference for observational studies? To answer this question,
we draw on perspectives from Rosenbaum (2002a, 2002b) and Imbens (2004). Rosenbaum’s framework follows the logic used in the randomized experiments and is an extension of permutation tests to observational studies. To begin with, Rosenbaum examines covariance adjustment in
completely randomized experiments. In the earlier examples, for simplicity of exposition, we did not use any covariates. In real evaluations of randomized experiments, evaluators typically would have covariates and want to control them in the analysis. Rosenbaum shows that testing the null
hypothesis of no treatment effect in studies with covariates follows the permutation approach, with the added task of fitting a linear or generalized linear model. After fitting a linear model that controls for covariates, the residuals for both conditions (treatment and control groups) are fixed and
known; therefore, one can apply Wilcoxon’s rank sum test or similar permutation tests (e.g., the Hodges-Lehmann aligned rank test) to model-fitted residuals. A propensity score adjustment can be combined with the permutation approach in observational studies with overt bias. “Overt bias .
.. can be seen in the data at hand—for instance, prior to treatment, treated participants are observed to have lower incomes than controls” (Rosenbaum, 2002b, p. 71). In this context, one can balance groups by estimating a propensity score, which is a conditional probability of receiving
treatment given observed covariates, and then perform conditional permutation tests using a matched sample. Once again, the statistical inference employs the same logic applied to randomized experiments. We describe in detail three such permutation tests after an optimal matching on
propensity scores (see Chapter 5): regression adjustment of difference scores based on a sample created by optimal pair matching, outcome analysis using the Hodges-Lehmann aligned rank test based on a sample created by optimal full or variable matching, and regression adjustment
using the Hodges-Lehmann aligned rank test based on a sample created by optimal full or variable matching. Finally, Rosenbaum considers statistical inference in observational studies with hidden bias. Hidden bias is similar to overt bias, but it cannot be seen in the data at hand, because
measures that might have revealed a selection effect were omitted from data collection. When bias exists but is not observable, one can still perform propensity score matching and conduct statistical tests by comparing treatment and control participants matched on propensity scores. But
caution is warranted, and sensitivity analyses should be undertaken before generalizing findings to a population. Surprisingly and importantly, the core component of Rosenbaum’s sensitivity analysis involves permutation tests, which include McNemar’s test, Wilcoxon’s signed rank test, and
the Hodges82 Lehmann point and interval estimates for matched pairs, sign-score methods for matching with multiple controls, sensitivity analysis for matching with multiple controls when responses are continuous variables, and sensitivity analysis for comparing two unmatched groups. We
review and illustrate some of these methods in Chapter 11. In 2004, Imbens reviewed inference approaches using nonparametric methods to estimate average treatment effects under the unconfoundedness assumption (i.e., the ignorable treatment assignment assumption). He discusses
advances in generating sampling distributions by bootstrapping (a method for estimating the sampling distribution of an estimator by sampling with replacement from the original sample) and observes, There is little formal evidence specific for these estimators, but, given that the estimators
are asymptotically linear, it is likely that bootstrapping will lead to valid standard errors and confidence intervals at least for the regression propensity score methods. Bootstrapping may be more complicated for matching estimators, as the process introduces discreteness in the distribution
that will lead to ties in the matching algorithm. (p. 21) Furthermore, Imbens, Abadie, and others show that the variance estimation employed in the matching estimators (Abadie & Imbens, 2002, 2006) requires no additional nonparametric estimation and may be a good alternative to
estimators using bootstrapping. Finally, in the absence of consensus on the best estimation methods, Imbens challenges the field to provide implementable versions of the various estimators that do not require choosing bandwidths (i.e., a user-specified parameter in implementing kernel-
based matching; see Chapter 9) or other smoothing parameters and to improve estimation methods so that they can be applied with a large number of covariates and varying degrees of smoothness in the conditional means of the potential outcomes and the propensity scores. In summary,
understanding the logic of statistical inference underscores in turn the importance of checking the tenability of statistical assumptions. In general, current estimation methods rely on permutation tests, which have roots in randomized experimentation. We know too little about estimation when
a reference distribution is generated by bootstrapping, but this seems promising. Inference becomes especially challenging when nonparametric estimation requires making subjective decisions, such as specifications of bandwidth size, when data contain a large number of covariates, and
when sample sizes are small. Caution seems patrticularly warranted in observational studies. Omission of important variables and measurement error in the covariates—both of which are difficult to detect—justify use of sensitivity analysis. 83 2.7 TYPES OF TREATMENT EFFECTS Unlike
many texts that address treatment effects as the net difference between the mean scores of participants in treatment and control conditions, we introduce and discuss a variety of treatment effects. This may seem pedantic, but there are at least four reasons why distinguishing, both
conceptually and methodologically, among types of treatment effects is important. First, distinguishing among types of treatment effects is important because of the limitation in solving the fundamental problem of causal inference (see Section 2.2). Recall that at the individual level, the
researcher cannot observe both potential outcomes (i.e., outcomes under the condition of treatment and outcomes under the condition of nontreatment) and thus has to rely on group averages to evaluate counterfactuals. The estimation of treatment effects so derived at the population level
uses averages or 1 = E(Y1|W = 1) - E(YO|W = 0). As such, the variability in individuals’ causal effects (Yi|Wi = 1) — (Yi|Wi = 0) would affect the accuracy of an estimated treatment effect. If the variability is large over all units, then 1 = E(Y1|W = 1) - E(YO|W = 0) may not represent the causal
effect of a specific unit very well, and under many evaluation circumstances, treatment effects of certain units (groups) serve a central interest. Therefore, it is critical to ask which effect is represented by the standard estimator. It is clear that the effect represented by the standard estimator
may not be the same as those arising from the researcher’s interest. Second, there are inevitably different ways to define groups and to use different averages to represent counterfactuals. Treatment effects and their surrogate counterfactuals are then multifaceted. Third, SUTVA is both an
assumption and a perspective for the evaluation of treatment effects. As such, when social interaction is absent, SUTVA implies that different versions of treatment (or different dosages of the same treatment) should result in different outcomes. This is the rationale that leads evaluators to
distinguish two different effects: program efficacy versus program effectiveness. Last, the same issue of types of treatment effects may be approached from a different perspective—modeling treatment effect heterogeneity, a topic that warrants a separate and more detailed discussion (see
Section 2.8). Based on our review of the literature, the following seven treatment effects are most frequently discussed by researchers in the field. Although some are related, the key notion is that researchers should distinguish between different effects. That is, we should recognize that
different effects require different estimation methods, and by the same token, different estimation methods estimate different effects. 1. Average treatment effect (ATE) or average causal effect: This is the core effect estimated by the standard estimator 84 Under certain assumptions, one
can also write it as 2. In most fields, evaluators are interested in evaluating program effectiveness, which indicates how well an intervention works when implemented under conditions of actual application (Shadish et al., 2002, p. 507). Program effectiveness can be measured by the intent-
to-treat (ITT) effect. ITT is generally analogous to ATE: “Statisticians have long known that when data are collected using randomized experiments, the difference between the treatment group mean and the control group mean on the outcome is an unbiased estimate of the ITT” (Sobel,
2005, p. 114). In other words, the standard estimator employs counterfactuals (either estimation of the missing-value outcome at the individual level or mean difference between the treated and nontreated groups) to evaluate the overall effectiveness of an intervention as implemented. 3.
Over the past 30 years, evaluators have also become sensitive to the differences between effectiveness and efficacy. The treatment assigned to a study participant may not be implemented in the way it was intended. The term efficacy is used to indicate how well an intervention works when
it is implemented under conditions of ideal application (Shadish et al., 2002, p. 507). Measuring the efficacy effect (EE) requires a careful monitoring of program implementation and taking measures to warrant intervention fidelity. EE plays a central role in the so-called efficacy subset
analysis (ESA) that deliberately measures impact on the basis of treatment exposure or dose. 4. Average treatment effect for the treated (TT) can be expressed as Heckman (1992, 1996, 1997, 2005) argued that in a variety of policy contexts, it is the TT that is of substantive interest. The
essence of this argument is that in deciding whether a policy is beneficial, our interest is not whether on average the program is beneficial for all individuals but whether it is beneficial for those individuals who are assigned or who would assign themselves to the treatment (Winship & Morgan,
1999, p. 666). The key notion here is TT # ATE. 5. Average treatment effect for the untreated (TUT) is an effect parallel to TT for the untreated: Although estimating TUT is not as important as TT, noting the existence of 85 such an effect is a direct application of the Neyman-Rubin model. In
policy research, the estimation of TUT addresses (conditionally and unconditionally) the question of how extension of a program to nonparticipants as a group might affect their outcomes (Heckman, 2005, p. 19). The matching estimators described in Chapter 8 offer a direct estimate of TUT,
although the effect is labeled as the sample (or population) average treatment effect for the controls (SATC or PATC). 6. Marginal treatment effect (MTE) or its special case of the treatment effect for people at the margin of indifference: In some policy and practice situations, it is important to
distinguish between marginal and average returns (Heckman, 2005). For instance, the average student going to college may do better (i.e., have higher grades) than the marginal student who is indifferent about going to school or not. In some circumstances, we wish to evaluate the impact
of a program at the margins. Heckman and Vytlacil (1999, 2005) have shown that MTE plays a central role in organizing and interpreting a wide variety of evaluation estimators. 7. Local average treatment effect (LATE): Angrist et al. (1996) outlined a framework for causal inference where
assignment to binary treatment is ignorable, but compliance with the assignment is not perfect so that the receipt of treatment is nonignorable. LATE is defined as the average causal effect for compliers. It is not the average treatment effect either for the entire population or for a
subpopulation identifiable from observed values. Using the instrumental variables approach, Angrist et al. demonstrated how to estimate LATE. To illustrate the importance of distinguishing different treatment effects, we invoke an example originally developed by Rosenbaum (2002b, pp.
181-183). Using hypothetical data in which responses under the treatment and control conditions are known, it demonstrates the inequality of four effects: Consider a randomized trial in which patients with chronic obstructive pulmonary disease are encouraged to exercise. Table 2.1
presents an artificial data set of 10 patients (i.,e., N=10andi=1, ..., 10). The treatment, Wi, is encouragement to exercise: Wi = 1, signifying encouragement, and Wi = 0, signifying no encouragement. The assignment of treatment conditions to patients is randomized. The pair (d1i, dOi)
indicates whether patient i would exercise, with or without encouragement, where 1 signifies exercise and 0 indicates no exercise. For example, i = 1 would exercise whether encouraged or not, (d1i, dOi) = (1, 1), whereas i = 10 would not exercise in either case, (d1i, d0i) = (0, 0), buti =3
exercises only if encouraged, (d1i, dOi) = (1, 0). 86 The response, (Y1i, YOi), is a measure of lung function, or forced expiratory volume on a conventional scale, with higher numbers signifying better lung function. By design, the efficacy effect is known in advance (EE = 5); that is, switching
from no exercise to exercise raises lung function by 5. Note that counterfactuals in this example are hypothesized to be known. For i = 3, Wi = 1 or exercise is encouraged, Y1i = 64 is the outcome under the condition of exercise, and Y0i = 59 is the counterfactual (i.e., if the patient did not
exercise, the outcome would have been 59), and for this case, the observed outcome Ri = 64. In contrast, for i = 4, Wi = 0 or exercise is not encouraged, Y1i = 62 is the counterfactual, and YOi = 57 is the outcome under the condition of no exercise, and for this case, the observed outcome Ri
=57. Di is a measure of compliance with the treatment; Di = 0, signifying exercise actually was not performed; and Di = 1, signifying exercise was performed. So for i = 2, even though Wi = 0 (no treatment, or exercise is not encouraged), the patient exercised anyway. Likewise, for i = 10,
even though exercise is encouraged and Wi = 1, the patient did not exercise, Di = 0. Comparing the difference between Wi and Di for each i gives a sense of intervention fidelity. In addition, on the basis of the existence of discrepancies in fidelity, program evaluators claim that treatment
effectiveness is not equal to treatment efficacy. Rosenbaum goes further to examine which patients responded to encouragement. Patients i = 1 and i = 2 would have the best lung function without encouragement, and they will exercise with or without encouragement. Patientsi=9 and i =
10 would have the poorest lung function without encouragement, and they will not exercise even when encouraged. Patients i = 3, 4, . . ., 8 have intermediate lung function without exercise, and they exercise only when encouraged. The key point noted by Rosenbaum is that although
treatment assignment or encouragement, Wi, is randomized, compliance with assigned treatment, (d1i, dOi), is strongly confounded by the health of the patient. Therefore, in this context, how can we estimate the efficacy? Table 2.1 An Artificial Example of Noncompliance With
Encouragement (Wi) to Exercise (Di) 87 Source: Rosenbaum (2002b, p. 182). Reprinted with kind permission of Springer Science + Business Media. To estimate a naive ATE, we might ignore the treatment state (i.e., ignoring Wi) and (naively) take the difference between the mean
response of patients who exercised and those who did not exercise (i.e., using Di as a grouping variable). In this context and using the standard estimator, we would estimate the naive ATE as which is nearly three times the true effect of 5. The problem with this estimate is that the people
who exercised were in better health than the people who did not exercise. Alternatively, a researcher might ignore the level of compliance with the treatment and use the treatment state Wi to obtain ATE (i.e., taking the mean difference between those who were encouraged and those who
were not). In this context and using the standard estimator, we find that the estimated ATE is nothing more than the intent-to-treat (ITT) effect: which is much less than the true effect of 5. This calculation demonstrates that ITT is an estimate of program effectiveness but not of program
efficacy. Finally, a researcher might ignore the level of compliance and estimate the average treatment effect for the treated (TT) by taking the average differences between Y1i and YOQi for the five treated patients: 88 Although TT is substantially lower than efficacy, this is an effect that serves
a central substantive interest in many policy and practice evaluations. In sum, this example illustrates the fundamental differences among four treatment effects, EE # ITT (ATE) # TT # Naive ATE, and one similarity, ITT = ATE. Our purpose for showing this example is not to argue which
estimate is the best but to show the importance of estimating appropriate treatment effects using appropriate methods suitable for research questions. 2.8 TREATMENT EFFECT HETEROGENEITY In the social and health sciences, researchers often need to test heterogeneous treatment
effects. This stems from substantive theories and the designs of observational studies in which study participants are hypothesized to respond to treatments, interventions, experiments, or other types of stimuli differentially. The coefficient of an indicator variable measuring treatment
condition often does not reflect the whole range of complexity within treatment effects. Treatment effect heterogeneity serves important functions in addressing substantive research and evaluation questions. For this reason, we give the topic separate treatment here. In this section, we
discuss the need to model treatment effect heterogeneity and we describe two tests developed by Crump, Hotz, Imbens, and Mitnik (2008). With these tests, not only can researchers test whether a conditional average treatment effect is zero or whether a conditional average treatment
effect is constant among subpopulations, but also they can use these tests to gauge whether the strongly ignorable treatment assignment assumption is plausible in a real setting, an assumption that is in general untestable. 2.8.1 The Importance of Studying Treatment Effect Heterogeneity
Treatment effects are by no means uniform across subpopulations. Consider the three treatment effects depicted in the previous section: the average treatment effect (ATE), the average treatment effect for the treated (TT), and the average treatment effect for the untreated (TUT). Xie,
Brand, and Jann (2012) show that these three quantities should not always be identical, and differences in these quantities reveal treatment effect heterogeneity. Xie et al. show, in addition, that the standard estimator for ATE is valid if and only if treatment effect heterogeneity is absent. By
definition and using the counterfactual framework, ATE is the expected difference between two outcomes, or ATE = E(Y1 — Y0). Using the iterative expectation rule, Xie et al. show that the quantity of ATE can be further decomposed as 89 where q is the proportion of untreated participants.
Note that the first term in the is the ATE estimated by the standard above equation, estimator. The estimator is valid and unbiased, if and only if the last two terms are equal to zero. Xie et al. underscore that in reality, these two terms often are not equal to zero; therefore, the standard
estimator of ATE assumes no treatment effect heterogeneity. When these two terms are not equal to zero or, equivalently, when treatment effect heterogeneity is present, using the standard estimator for ATE is biased. Specifically, these two terms indicate two types of selection biases that
are produced by ignorance of the treatment effect heterogeneity. is the average difference between the two First, the term groups in outcomes if neither group receives the treatment. Xie et al. (2012) call this “pretreatment heterogeneity bias.” This source of selection bias exists, for instance,
when preschool children who attended Head Start programs, which are designed typically for low-income children and their families, are compared unfavorably with other children who did not attend Head Start programs. Comparisons would be affected by the absence of a control for family
socioeconomic resources. Second, the term (TT — TUT)q indicates the difference in the average treatment effect between the two groups, TT and TUT, weighted by the proportion untreated, g. Xie et al. (2012) call this “treatment-effect heterogeneity bias.” This source of selection bias exists,
for instance, when researchers ignore the fact that attending college and earning a degree is selective. An evaluation of the effect of higher education should account for the tendency of colleges to attract people who are likely to gain more from college experiences. Crump et al. (2008)
developed two nonparametric tests of treatment effect heterogeneity. The first test is for the null hypothesis that the treatment has a zero average effect for all subpopulations defined by covariates. The second test is for the null hypothesis that the average effect conditional on the covariates
is identical for all subpopulations. Section 2.8.4 describes these two tests, and Section 2.8.5 illustrates their applications with an empirical example. The motivation for developing these two tests, according to the authors, was threefold. The first was to address substantive questions. In
many projects, researchers are primarily interested in establishing whether the average treatment effect differs from zero; when this is true (i.e., when there is evidence supporting a nonzero ATE), researchers may be further interested in whether there are subpopulations for which the effect
is substantively and statistically significant. A concrete example is a test of the effectiveness of a new drug. The evaluators in such a context are interested not only in whether a new drug has a nonzero average effect but whether it has a nonzero (positive or negative) effect 90 for
identifiable subgroups in the population. The presence of an effect might permit better targeting who should or should not use the drug: “If one finds that there is compelling evidence that the program has nonzero effect for some subpopulations, one may then further investigate which
subpopulations these are, and whether the effects for these subpopulations are substantively important” (Crump et al., 2008, p. 392). In practice, each observed covariate available to the evaluator defines a subpopulation, and therefore, one faces a challenge to test many null hypotheses
about a zero treatment effect for these subpopulations. The test Crump et al. (2008) developed offers a single test for zero conditional average treatment effects so that the multiple-testing problem is avoided. The second part of the motivation for developing these tests was concern related
to whether there is heterogeneity in the average effect conditional on observed covariates, such as race/ethnicity, education, and age. According to Crump et al. (2008), “If there is strong evidence in favor of heterogeneous effects, one may be more reluctant to recommend extending the
program to populations with different distributions of the covariates” (p. 392). The third motivation for developing tests of treatment effect heterogeneity was related to developing an indirect assessment of the plausibility of the strongly ignorable treatment assignment assumption. As
described earlier, this crucial assumption is usually not testable. However, there exist indirect approaches, primarily those developed by Heckman and Hotz (1989) and Rosenbaum (1997), from which users can check whether the assumption is plausible or whether additional efforts should
be made if ignorability is obviously not the case. Comparing to these two approaches, the tests developed by Crump et al. (2008) are easier to implement. Because of the importance of checking the unconfoundedness assumption in observational studies and the unique advantages offered
by the tests from Crump et al., we give this issue a closer examination in the next subsection. Much of the discussion on testing and modeling treatment effect heterogeneity may be illustrated by the inclusion of interactions in an outcome analysis. By definition, the existence of a significant
interaction indicates that the impact of an independent variable on the dependent variable varies by the level of another independent variable. Heterogeneous treatment effects, on one hand, are analogous to the existence of significant interactions in the regression model and reflect slope
differences of the treatment among subpopulations. When we say that the treatment effect is heterogeneous, we mean that the treatment effect is not uniform and varies by subpopulations defined by covariates. It may be measured by interactions, such as age group by treatment, race
group by treatment, income by treatment, and gender by treatment group indicators. The issue of testing and modeling treatment effect heterogeneity, on the other hand, is more complicated than checking and testing significant interactions. Indeed, treatment effect heterogeneity may not be
discovered by testing for 91 interactions. Elwert and Winship (2010) argue that the meaning of “main” effects in interaction models is not always clear. Crump et al. (2008) found that treatment effect heterogeneity exists even when the main treatment effect is not statistically significant (see,
e.g., reevaluation of the MDRC study of California’s Greater Avenues to INdependence [GAIN] programs; Crump et al., 2008, pp. 396—-398). As discussed regarding the counterfactual framework, the potential outcome can be estimated only at the group level, so the meaning of interactions
in an outcome regression using individuals as units is not clearly defined and, therefore, does not truly show treatment heterogeneity. Xie et al. (2012) recommend focusing on the interaction of the treatment effect and the propensity score as one useful way to study effect heterogeneity.
Although testing the interaction of treatment by a propensity score is not the only means for assessing effect heterogeneity and the method is controversial, it is often more interpretable because the propensity score summarizes the relevance of the full range of covariates. According to Xie
et al., this is the only interaction that warrants attention if selection bias in models of treatment effect heterogeneity is a concern. On the basis of this rationale, Xie and his colleagues developed three methods to model effect heterogeneity: the stratification-multilevel (SM) method, the
matching-smoothing (MS) method, and the smoothing-differencing (SD) method. We discuss and illustrate the SM method in Chapter 6. 2.8.2 Checking the Plausibility of the Unconfoundedness Assumption Following Crump et al. (2008), in this subsection, we describe two types of tests that
are useful in assessing the plausibility of the unconfoundedness assumption. The first set of tests was developed by Heckman and Hotz (1989). Partitioning the vector of covariates X into two parts, a variable V and the remainder Z, so that X = (V, Z')', Heckman and Hotz propose that one
can analyze the data (V, W, Z) as if V is the outcome, W is the treatment indicator, and as if unconfoundedness holds conditional on Z. The researcher is certain that the effect of the treatment on V is zero for all units, because V is a pretreatment variable or covariate. Under this context, if
the researcher finds statistical evidence suggesting a treatment effect on V, it must be the case that the unconfoundedness conditional on Z is incorrect, or it is suggestive that unconfoundedness is a delicate assumption. The test cannot be viewed as direct evidence against
uncondoundedness, because it is not conditional on the full set of covariates X = (V, Z'). The tests are effective if the researcher has data on multiple lagged values of the outcome, that is, one may choose V to be the oneperiod lagged value of the outcome. Instead of using multiple lagged
values of the outcome, Rosenbaum (1997) considers using two or more control groups. If potential biases would likely be different for both groups, then evidence that all control groups led to similar estimates is suggestive that unconfoundedness may be appropriate. Denote Ti as 92 an
indicator for the two control groups, Ti = 0 for the first control group and Ti = 1 for the second group. The researcher can test whether Yi(0) Ti | Xi in the two control groups. If one finds evidence that this pseudo treatment has a systematic effect on the outcome, then it must be the case that
unconfoundedness is violated for at least one of the two control groups. The test of a zero conditional average treatment effect developed by Crump et al. (2008) is equivalent to the tests Heckman and Hotz (1989) and Rosenbaum (1997) developed. However, it is much easier to implement.
The test does not require the use of lagged values of an outcome variable or multiple control groups, and it can be applied directly to all covariates readily available to the researcher. 2.8.3 A Methodological Note About the Hausman Test of Endogeneity Earlier in the description of the
strongly ignorable treatment assignment assumption, we showed that this assumption is equivalent to the OLS assumption regarding the independence of error term from an independent variable. In fact, violation of the unconfoundedness assumption is the same problem of endogeneity one
may encounter in a regression analysis. In Subsection 2.8.2, we showed two indirect tests of unconfoundedness, and we mentioned that this assumption in empirical research is virtually not directly testable. To understand the utility of the nonparametric tests that Crump et al. (2008)
developed, particularly their usefulness in checking the unconfoundedness assumption, we need to offer a methodological note about a test commonly employed in econometric studies for the endogeneity problem. The test is the Hausman (1978) test of endogeneity, sometimes known as
the misspecification test in a regression model. We intend to show that the Hausman test has limitations for accomplishing the goal of checking unconfoundedness. Denoting the dependent variable by y1 and the potentially endogenous explanatory variable by y2, we can express our
population regression model as where z 1 is 1 x L1 (including a constant), 81 is L1 x 1, and ul is the unobserved disturbance. The set of all exogenous variables is denoted by the 1 x L vector z, where z 1 is a strict subset of z. The maintained exogeneity assumption is E(z'ul) = O.
Hausman suggested comparing the OLS and two-stage least squares estimators of as a formal test of endogeneity: If y2 is uncorrelated with ul, the OLS and two-stage least squares estimators should differ only by sampling error. For more details about the test, we refer to Wooldridge
(2002, pp. 118-122). It is important to note that to implement the Hausman test, the analyst should have knowledge about the source of endogeneity, that is, the 93 source of omitted variables in the regression that causes the correlation of the error term with the endogenous explanatory
variable. In reality, particularly in the observational studies, this information is often absent, and the analyst does not have a clear sense about unobserved variables that may cause selection biases. Therefore, just like running an IV model where the analyst has difficulty finding an
appropriate instrumental variable that is not correlated with the regression error term but is highly correlated with the endogenous explanatory variable, the analyst has the same difficulty in specifying source variables for endogeneity to run the Hausman test. It is for this reason that
researchers find appeal in the indirect methods, such as the Heckman and Hotz (1989) test and the Rosenbaum (1997) test, to gauge the level of violation of ignorability. And it is for this reason that the tests developed by Crump et al. (2008) appear to be very useful. 2.8.4 Tests of
Treatment Effect Heterogeneity We now return to the tests developed by Crump and colleagues (2008) for treatment effect heterogeneity. With empirical data for treatment indicator Wi (Wi = 1, treated; and Wi = 0, control), a covariate vector Xi, and outcome variable Yi for the ith
observation, the researcher can test two pairs of hypotheses concerning the conditional average treatment effect t(x) when X = x. The first pair of hypotheses, called “a test of zero conditional average treatment effect,” is Under the null hypothesis HO, the average treatment effect is zero for
all values of the covariates, whereas under the alternative Ha, there are some values of the covariates for which the treatment effect differs from 0. The second pair of hypotheses, called “a test of constant conditional average treatment effect,” is Under the null hypothesis all subgroups
defined by covariate vector x have treatment effects a constant treatment effect 1, whereas under the alternative of subgroups defined by x do not equal a constant value 1, and therefore, there exists effects heterogeneity. Crump et al. (2008) developed procedures to test the above two pairs
of hypotheses. There are two versions of the tests: parametric and nonparametric tests. The Stata programs to implement these tests are available at the following w ebsi te: omitnik/software.html. Users need to 94 download the program and help files by clicking the ado file and help file
from the section of “Nonparametric Tests for Treatment Effect Heterogeneity.” The Stata ado file is named “test_condate.ado,” and the help file is named “test_condate.hlp.” Users need to save both files in the folder storing usersupplied ado programs, typically “C:\ado\plus\t,” in a Windows
operating system. Each version of the tests is based on additional assumptions about the data. For the parametric version of the tests, the assumptions are similar to those for most analyses described by this book, such as an independent and identically distributed random sample of (Yi, Wi,
and Xi), unconfoundedness, and overlap of the two groups (treated and nontreated) in the covariate distribution. For the nonparametric version of the tests, Crump et al. (2008) make the following assumptions: the Cartesian product of intervals about the covariate distributions, conditional
outcome distributions, and rates for series estimators. The parametric version of the tests is standard. The test statistic T for the first pair of hypotheses HO and Ha has a chi-square distribution with K degrees of freedom, where K is the number of covariates being tested, including the
treatment indicator variable: To implement the test, the analyst specifies the outcome variable, the set of covariates being tested for effects heterogeneity, and the treatment indicator variable. After running the test_condate program, the analyst obtains the test statistic T labeled “Chi-Sq
Test,” the degree-of-freedom K labeled “dof Chisq,” and the observed p value of the chi-square labeled “p-val Chi-sq” from the output. All three quantities are shown under the column heading of “Zero_Cond_ATE"—that is, they are the results for testing the first pair of hypotheses HO and
Ha. A p value such as p < .05 suggests that the null hypothesis HO can be rejected at a statistically significant level. That is, a significant chi-square value indicates that the treatment effect is nonzero for subgroups in the sample, and the unconfoundedness assumption is probably violated.
For the parametric model, the test statistic T ' for the second pair of also has a chi-square distribution with K — 1 degrees of hypotheses, and freedom, where K is the number of covariates being tested, including the treatment indicator variable: After running the test_condate program, the
analyst obtains three statistics: T' labeled “Chi-Sq Test,” degree-of-freedom or K — 1 labeled “dof Chi-sq,” and the observed p value of the chi-square labeled “p-val Chi-sq” under the 95 column heading of “Const_Cond_ATE.” These are test results for the second A p value such as p < .05
suggests that the null pair of hypotheses and hypothesis can be rejected at a statistically significant level. When a significant chi-square is observed, the analyst can reject the hypothesis of a constant treatment effect across subgroups defined by covariates and conclude that the treatment
effect varies across subgroups. This suggests that treatment effect heterogeneity exists. Perhaps the most important contribution made by Crump et al. (2008) is the extension of the tests from a parametric to nonparametric setting. Crump et al. developed equivalent tests by applying the
series estimator of regression function and provided theorems with proofs. The development of this procedure employs sieve methods (Chen, Hong, & Tarozzi, 2008; Imbens, Newey, & Ridder, 2006). It is for this reason that Crump et al. refer to their tests as “nonparametric tests for
treatment effect heterogeneity,” although the two tests using chi-square are really parametric rather than nonparametric. Crump et al. show that in large samples, the test statistic of the nonparametric version has a standard normal distribution. Both T for the first pair of hypotheses, HO and
Ha, and T' for the second pair of hypotheses, and are distributed as The output of test_condate shows two types of quantities: the test statistic T (or T') labeled “Norm Test” and the observed p value of T (or T') labeled “pval Norm.” Like the output for the parametric tests, both quantities are
shown in two columns: One is under the column heading of “Zero_Cond_ATE,” which shows the results for testing the first pair of hypotheses, HO and Ha, and the second is under the column heading of “Const_Cond_ATE,” which shows the results for testing the second pair of hypotheses,
and If the p value of T or T"' is less than .05 (p < .05), the analyst can reject the null hypothesis at a statistically significant level; otherwise, the analyst fails to reject the null hypothesis. With the nonparametric tests, the analyst may conclude that the treatment effect is nonzero for subgroups
in the sample and that the unconfoundedness assumption is not plausible, if the “p-val Norm” under “Zero_Cond_ATE” is less than .05 ( p < .05); the analyst may conclude that the treatment effect varies by subgroup and treatment effect heterogeneity exists if the “p-val Norm” under
“Const_Cond_ATE” is less than .05 (p < .05). The output of the test_condate program also presents results of a test of the zero average treatment effect under the column heading of “Zero_ ATE” for comparison purposes. This is the test commonly used to estimate the average treatment
effect and its standard error. This is typically the main effect used in analysis, and it does not explicitly test or model treatment effect heterogeneity. The crucial message conveyed by the comparison is that the test of the zero ATE may show a nonsignificant p value, but the tests of treatment
effect heterogeneity 96 could still be statistically significant. If this is observed, effect heterogeneity exists even when the main treatment effect is not statistically significant. 2.8.5 Example We now present a study investigating intergenerational dependence on welfare and its relation to child
academic achievement. The data for this study are used in several examples throughout this book. Conceptual issues and substantive interests. As described in Chapter 1, prior research has shown that both childhood poverty and childhood welfare dependency have an impact on child
development. In general, growing up in poverty adversely affects life course outcomes, and the consequences become more severe by length of poverty exposure (P. K. Smith & Yeung, 1998). Duncan et al. (1998) found that family economic conditions in early childhood had the greatest
impact on achievement, especially among children in families with low incomes. Foster and Furstenberg (1998, 1999) found that the most disadvantaged children tended to live in female-headed households with low incomes, receive public assistance, and/or have unemployed heads of



household. In their study relating patterns of childhood poverty to children’s IQs and behavioral problems, Duncan, Brooks-Gunn, and Klebanov (1994) found that the duration of economic deprivation was a significant predictor of both outcomes. Focusing on the effects of the timing, depth,
and length of poverty on children, Brooks-Gunn and Duncan’s study (1997) reported that family income has selective but significant effects on the well-being of children and adolescents, with greater impacts on ability and achievement than on emotional development. In addition, Brooks-
Gunn and Duncan found that poverty had a far greater influence on child development if children experienced poverty during early childhood. The literature clearly indicates a link between intergenerational welfare dependence and child developmental outcomes. From the perspective of a
resources model (see, e.g., Wolock & Horowitz, 1981), this link is repetitive and leads to a maladaptive cycle that traps generations in poverty. Children born to families with intergenerational dependence on welfare may lack sufficient resources to achieve academic goals, which will
ultimately affects employability and the risk for using public assistance in adulthood. Corcoran and Adams (1997) developed four models to explain poverty persistence across generations: (1) The lack of economic resources hinders human capital development; (2) parents’ noneconomic
resources, which are correlated with their level of poverty, determine children’s poverty as adults; (3) the welfare system itself produces a culture of poverty shared by parents and children; and (4) structural-environmental factors associated with labor market conditions, demographic
changes, and racial discrimination shape 97 intergenerational poverty. Corcoran and Adams’s findings support all these models to some extent, with the strongest supports established for the economic resources argument. Prior research on poverty and its impact on child development has
shed light on the risk mechanisms linking resources and child well-being. Some of these findings have shaped the formation of welfare reform policies, some have fueled the ongoing debate about the impacts of welfare reform, and still other findings remain controversial. There are two major
methodological limitations in this literature. First, prior research did not analyze a broad range of child outcomes (i.e., physical health, cognitive and emotional development, and academic achievement). Second, and more central to this example, prior research implicitly assumed a causal
effect of poverty on children’s academic achievement. However, most such studies used covariance control methods such as regression or regression-type models without explicit control for sample selection and confounding covariates. As we have shown earlier, studies using covariance
control may fail to draw valid causal inferences. Throughout the book, we use different propensity score models to analyze the causal inference of poverty on child academic achievement. Data. This study uses the 1997 Child Development Supplement (CDS) to the Panel Study of Income
Dynamics (PSID) and the core PSID annual data from 1968 to 1997 (Hofferth et al., 2001). The core PSID comprises a nationally representative sample of families. In 1997, the Survey Research Center at the University of Michigan collected information on 3,586 children between the ages
of birth and 12 years who resided in 2,394 PSID families. Information was collected from parents, teachers, and the children themselves. The objective was to provide researchers with comprehensive and nationally representative data about the effects of maternal employment patterns,
changes in family structure, and poverty on child health and development. The CDS sample contained data on academic achievement for 2,228 children associated with 1,602 primary caregivers. To address the research question about intergenerational dependence on welfare, we analyze
a subset of this sample. Children included in the study were those who had valid data on receipt of welfare programs in childhood (e.g., AFDC [Aid to Families With Dependent Children]) and whose caregivers were 36 years or younger in 1997. The study involved a careful examination of 30
years of data using the 1968 PSID ID number of primary caregivers as a key. Due to limited information, the study could not distinguish between the types of assistance programs. The study criteria defined a child as a recipient of public assistance (e.g., AFDC) in a particular year if his or
her caregiver ever received the AFDC program in that year and defined a caregiver as a recipient of AFDC in a particular year if the caregiver’'s primary caregiver (or the study child’s grandparent) ever received the program in that year. The definition of receipt of AFDC in a year cannot 98
disentangle short-term use (e.g., receipt of AFDC for only a single month) from long-term use (e.g., all 12 months). One limitation of the study is posed by the discrete nature of AFDC data and the fact that the AFDC study variable (i.e., “caregiver's number of years using AFDC in
childhood”) was treated as a continuous variable in the analysis, which may not accurately measure the true influence of AFDC. After screening the data, applying the inclusion criteria, and deleting missing data listwise, the study sample comprised 1,003 children associated with 708
caregivers. Tests for treatment effect heterogeneity . Table 2.2 shows descriptive statistics of the study sample. For this illustration, we report findings that examine one domain of academic achievement: the age-normed “letter-word identification” score of the Woodcock-Johnson Revised
Tests of Achievement (Hofferth et al., 2001). A high score on this measure indicates high achievement. The score is defined as the outcome variable for this study. The “treatment” in this study is child AFDC use from birth to current age in 1997. Of 1,003 study children, 729 never used
AFDC or “untreated,” and 274 used AFDC or “treated.” The six covariates are major control variables observed from the PSID and CDS surveys. Table 2.2 Descriptive Statistics of the Study Sample Table 2.3 shows findings for the tests of treatment effect heterogeneity. Results suggest that
we can reject the null hypothesis of a zero conditional average treatment effect using the parametric test (x2[df = 7] = 24.55, p <.001) and the nonparametric test (test statistic following a normal distribution = 4.69, p < .000). The results confirm that the unconfoundedness assumption in this
data set is not plausible, and corrective approaches to control for selection bias are needed if we want to draw a causal inference that is more rigorous and valid. 99 The results also suggest that there are some values of the covariates for which the treatment effect differs from zero. With
regard to the tests regarding a constant conditional average treatment effect, we find that both tests show a nonsignificant p value (i.e., p = .0844 from the parametric test and p = .0692 from the nonparametric test). With these findings, we fail to reject the null hypothesis, and hence, we
cannot confirm that treatment effect heterogeneity exists in this sample. The test of a zero average treatment effect shows that the main treatment variable is statistically significant (p < .000), meaning that AFDC has a nonzero impact on child academic achievement. This commonly used
test shows the main effect of treatment. It does not tell us whether AFDC use affects child academic achievement differentially or whether treatment effect heterogeneity exists. As such, it does not reflect the whole range of complexity of treatment effects. 2.9 HECKMAN'S ECONOMETRIC
MODEL OF CAUSALITY I n Chapter 1, we described two traditions in drawing causal inferences: the econometric tradition that relies on structural equation modeling and the statistical tradition that relies on randomized experiment. The economist James Heckman (2005) developed a
conceptual framework for causal inference that he called the scientific model of causality. In this work, Heckman sharply contrasted his model with the statistical approach—primarily the NeymanRubin counterfactual model—and advocated for an econometric approach that directly models
the selection process. Heckman argued that the statistical literature on causal inferences was incomplete because it had not attempted to model the structure or process by which participants are selected into treatments. Heckman further argued that the statistical literature confused the task
of identifying causal models from population distributions (where the sampling variability of empirical distributions is irrelevant) with the task of identifying causal models from actual data (where sampling variability is an issue). Because this model has stimulated a rich debate, we highlight its
main features in this section. The brevity of our presentation is necessitated by the fact that the model is a comprehensive framework and includes forecasting the impact of interventions in new environments, a topic that exceeds the scope of this book. We concentrate on Heckman’s
critique of the Neyman-Rubin model, which is a focal point of this chapter. Table 2.3 Tests for Treatment Effect Heterogeneity 100 Source: Data from Hofferth et al., 2001. First, Heckman (2005, pp. 9-21) developed a notation system for his scientific model that explicitly encompassed
variables and functions that were not defined or treated comprehensively in prior literature. In this system, Heckman defined outcomes for persons in a universe of individuals and corresponding to possible treatments within a set of treatments where assignment is subject to certain rules; the
valuation associated with each possible treatment outcome, including both private evaluations based on personal utility and evaluations by others (e.qg., the “social planner”); and the selection mechanism appropriate under alternative policy conditions. Using this notation system and
assumptions, Heckman further defined both individual-level treatment (causal) effects and population-level treatment effects. Second, Heckman (2005, p. 3) specified three distinct tasks in the analysis of causal models: (1) defining the set of hypotheticals or counterfactuals, which requires a
scientific theory; (2) identifying parameters (causal or otherwise) from hypothetical population data, which requires mathematical analysis of point or set identification; and (3) identifying parameters from real data, which requires estimation and testing theory. Third, Heckman (2005, pp. 7-9)
distinguished three broad classes of policy evaluation questions: (1) evaluating the impact of previous interventions on outcomes, including their impact in terms of general welfare (i.e., a problem of internal validity); (2) forecasting the impacts (constructing counterfactual states) of
interventions implemented in one environment on other environments, including their impacts in terms of general welfare (i.e., a problem of external validity); and (3) forecasting the impacts of interventions (constructing counterfactual states associated with interventions) never historically
experienced for other environments, including impacts in terms of general welfare (i.e., using history to forecast the consequences of new policies). Fourth, Heckman (2005, pp. 35—38) contrasted his scientific model (hereafter denoted as H) with the Neyman-Rubin model (hereafter denoted
as NR) in terms of six basic assumptions. Specifically, NR assumes (1) a set of counterfactuals defined for ex post outcomes (no evaluations of outcomes or specification of treatment selection rules); (2) no social interactions; (3) invariance of counterfactual to assignment of treatment; (4)
evaluating the impact of historical interventions on outcomes, including their impact in terms of welfare is the only problem of interest; (5) mean causal effects are the only objects of interest; and 101 (6) there is no simultaneity in causal effects, that is, outcomes cannot cause each other
reciprocally. In contrast, H (1) decomposes outcomes under competing states (policies or treatments) into their determinants; (2) considers valuation of outcomes as an essential ingredient of any study of causal inference; (3) models the choice of treatment and uses choice data to infer
subjective valuations of treatment; (4) uses the relationship between outcomes and treatment choice equations to motivate, justify, and interpret alternative identifying strategies; (5) explicitly accounts for the arrival of information through ex ante and ex post analyses; (6) considers
distributional causal parameters as well as mean effects; (7) addresses all three policy evaluation problems; and (8) allows for nonrecursive (simultaneous) causal models. The comparison of the NR and H models is summarized and extended in Table 2.4. Finally, Heckman (2005, pp. 50—
85) discussed the identification problem and various estimators to evaluate different types of treatment effects. In Section 2.7, we have highlighted the main effects of interest that are commonly found in the literature (i.e., ATE, TT, TUT, MTE, and LATE). Heckman carefully weighed the
implicit assumptions underlying four widely used methods of causal inference applied to data in the evaluation of these effects: matching, control functions, the instrumental variable method, and the method of directed acyclic graphs (i.e., Pearl, 2000). The scientific model of causality has
clearly influenced the field of program evaluation. Perhaps the most important contribution of the model is its comprehensive investigation of the estimation problem, effects of interest, and estimation methods under a general framework. This is pioneering. Although it is too early to make
judgments about the model’s strengths and limitations, it is stimulating widespread discussion, debate, and methodological innovation. To conclude, we cite Sobel's (2005) comment that, to a great extent, coincides with our opinion: Table 2.4 Econometric Versus Statistical Causal Models
102 Source: Heckman, J. J. (2005). The scientific model of causality. Sociological Methodology, 35, p. 87. Heckman argues for the use of an approach to causal inference in which structural models play a central role. It is worth remembering that these models are often powerful in part
because they make strong assumptions. . . . But | do not want to argue that structural modeling is not useful, nor do | want to suggest that methodologists should bear complete responsibilities for the use of the tools they have fashioned. To my mind, both structural modeling and
approaches that feature weaker assumptions have their place, and in some circumstances, one will be more appropriate than the other. Which approach is more reasonable in a particular case will often depend on the feasibility of conducting a randomized study, what we can actually say
about the reasonableness of invoking various assumptions, as well as the question facing the investigator (which might be dictated by a third party, such as a policy maker). An investigator’s tastes and preferences may also come into play. A cautious and risk-averse investigator may care
primarily about being right, even if this limits the conclusions he or she draws, whereas another investigator who wants (or is required) to address a bigger question may have (or need to have) a greater tolerance for uncertainty about the validity of his or her conclusions. (pp. 127-128) 2.10
CONCLUSION This chapter examined the Neyman-Rubin counterfactual framework, the ignorable treatment assignment assumption, the SUTVA assumption, the underlying logic of statistical inference, treatment effect heterogeneity and its 103 tests, and the econometric model of
causality. We began with an overview of the counterfactual perspective that serves as a conceptual tool for the evaluation of treatment effects, and we ended with a brief review of Heckman’s comprehensive and controversial scientific model of causal inference. It is obvious that there are
disagreements among research scholars. In particular, debate between the econometric and statistical traditions continues to play a central role in the development of estimation methods. Specifically, we have emphasized the importance of disentangling treatment effects from treatment
assignment and evaluating different treatment effects suitable to evaluation objectives under competing assumptions. Although the unconfoundedness assumption is untestable and the classic test of endogeneity is not helpful in the context of observational studies, new nonparametric tests
of treatment effect heterogeneity are useful. They offer a convenient test for gauging the heterogeneity of treatment effects and evaluating the plausibility of the unconfoundedness assumption. We will revisit these issues throughout the book. NOTES 1. In the literature, there are notation
differences in expressing this and other models. To avoid confusion, we use consistent notation in the text and present the original notation in footnotes. Equation 2.1 was expressed by Heckman and Vytlacil (1999, p. 4730) as 2. In Winship and Morgan’s (1999, p. 665) notation, Equation
2.4 is expressed as 3. In Winship and Morgan’s (1999) notation, Equation 2.5 is expressed as 4. Holland (1986) provides a thorough review of these statisticians’ work under the context of randomized experiment. 5. In Rosenbaum’s (2002b, p. 41) notation, Equation 2.6 is expressed as Rsi
= ZsirTsi — (1 - Zsi)rCsi. 6. We have changed notation to make the presentation of SUTVA consistent with the notation system adopted in this chapter. In Rubin’s original 104 presentation, he used u in place of i and t in place of w. 105 CHAPTER 3 Conventional Methods for Data Balancing
As preparation for understanding advances in data balancing, this chapter reviews conventional approaches to the analysis of observational data. In Chapter 2, we examined the Neyman-Rubin counterfactual framework and its associated assumptions. Although the assumption of “no social
interactions” is often deemed too strong, researchers generally agree that the ignorable treatment assignment assumption is necessary for program evaluations, including evaluations using observational data. Given the importance of this assumption in all emerging approaches, this chapter
scrutinizes the mechanisms that produce violations of ignorable treatment assignment as well as conventional corrective approaches. We do so by creating data under five scenarios, and we show how to balance data by using three common methods, namely, ordinary least squares (OLS)
regression, matching, and stratification. All three methods provide for control of covariates and may lead to unbiased estimation of treatment effects. All three methods are seemingly different but essentially aim to accomplish common objectives. All three also have limitations in handling
selection bias. Understanding these methods is helpful in developing an understanding of advanced models. The key message this chapter conveys is that covariance control does not necessarily correct for nonignorable treatment assignment, and it is for this reason that other methods for
estimating treatment effects should be considered in practice. Section 3.1 presents a heuristic example to address the question of why data balancing is necessary. Section 3.2 presents the three correction models (i.e., OLS regression, matching, and stratification). Section 3.3 describes the
procedure for data simulation used in this chapter, particularly the five scenarios under which the ignorable treatment assignment assumption is violated to varying degrees. Section 3.4 shows the biases related to each method for estimating treatment effects under each of the five scenarios
(i.e., the results of data simulation). Section 3.5 summarizes the implications of the data simulation. Section 3.6 is a succinct review of important aspects of running OLS regression, including important assumptions embedded in the OLS model, and a review of Berk’s (2004) work on the
pitfalls in running regression. Section 3.7 106 concludes with a summary of key points. 3.1 WHY IS DATA BALANCING NECESSARY? A HEURISTIC EXAMPLE To illustrate the importance of controlling for covariates in observational studies—which is analogous to balancing data—we
repeat the famous example first published by Cochran (1968) and repeatedly cited by others. Rubin (1997) also used this example to show the value of data balancing and the utility of stratification. The importance of controlling for covariates is underscored by Table 3.1, which presents a
comparison of mortality rates for two groups of smokers (i.e., cigarette smokers and cigar and pipe smokers) and one nonsmoking group that were measured in three countries: Canada, the United Kingdom, and the United States. Rubin (1997) argued that analyses of these data failed to
control for age—a crucial covariate of mortality rate—and that, as a result, the observed data appear to show that cigarette smoking is good for health, especially relative to cigar and pipe smoking. For example, the Canadian data showed that the cigar and pipe smokers had a 35.5%
mortality rate, whereas the mortality rates for the cigarette smokers and nonsmokers were not only similar but also much lower than those of the cigar and pipe smokers (20.5% and 20.2%, respectively). The pattern of mortality was consistent in the data from the other two countries.
However, this finding is contradictory to our knowledge about the adverse consequences of smoking. Why is this the case? The primary reason is that age is an important confounding variable that affects the outcome of mortality rate. Note that the cigar and pipe smokers in Canada had the
oldest average age (i.e., 65.9 years), while the average age of the nonsmokers was in the middle range for the three groups (i.e., 54.9 years), and the cigarette smokers had the youngest average age (i.e., 50.5 years). As presented, the unadjusted mortality rates are known as crude death
rates because they do not take into account the age distribution of the three groups. To conduct a meaningful evaluation, we must balance the data to control for covariance. Balancing implies data manipulation that, in this case, would render trivial the confounding effect of age. Balancing
raises the question of what the mortality rates will look like if we force all three groups to follow the same age distribution. To address the balancing problem, both Cochran (1968) and Rubin (1997) used a method called stratification, which is synonymous with subclassification. The lower
panel of Table 3.1 shows the adjusted mortality rates for all three groups after applying three schemes of stratification. Cochran tested three schemes by stratifying the sample into 2 subclasses, 3 subclasses, and 9 to 11 subclasses. All three subclassifications successfully removed
estimation bias, under which the apparent advantages of cigarette smoking disappear, and nonsmokers are shown as the healthiest group. 107 The stratification method used by Cochran is one of the three methods that are the focus of this chapter, and we elaborate on stratification in
subsequent sections. The key message conveyed by this example is that estimation bias can be substantial if covariates in data from observational studies are uncontrolled. There are a number of other methods available to accomplish the same objective of controlling for covariates. One
popular method in demography is age standardization. The core idea of age standardization is simple: Choose one age distribution from the three groups and, for each age group, multiply the proportion of persons in the group from the standard population to each agespecific death rate,
then sum up all products. The resulting number is the adjusted mortality rate or standardized mortality rate for which age is no longer a confounding variable. To illustrate this concept, we created an artificial data set (Table 3.2) that simulates the same problem as found in Table 3.1. Note
that i n Table 3.2, the unadjusted mortality rate is the highest for cigar and pipe smokers, while the groups of cigarette smokers and nonsmokers appear to have the same rate. In addition, note that the simulated data follow the same pattern of age distribution as in the Table 3.1 data, where
the cigar and pipe smokers are the oldest (i.e., 25% of this group were 61 years or older), while the cigarette smokers are the youngest (i.e., 8.33% of this group were 61 years or older). Table 3.1 Comparison of Mortality Rates for Three Smoking Groups in Three Databases Sources:
Cochran (1968, Tables 1-3) and Rubin (1997, p. 758). Table 3.2 Artificial Data of Mortality Rates for Three Smoking Groups 108 To conduct age standardization, we can choose the age distribution from any one of the three groups as a standard. Even when a different age is chosen—that
is, a different standard is selected—the results will be the same in terms of the impact of smoking on mortality rate. In our illustration, we selected the age distribution of the cigarette smokers as the standard. Table 3.3 shows the results of the standardization. Using the age distribution of the
cigarette smokers as the standard, we obtained three adjusted mortality rates (Table 3.3). The adjusted mortality rate of the cigarette smokers (i.e., 27.17 per 1,000) is the same as the unadjusted rate because both rates were based on the same age distribution. The adjusted mortality rate
of the cigar and pipe smokers (or, more formally, “the adjusted mortality rate of cigar and pipe smokers with the cigarette smokers’ age distribution as standard”) is 26.06 per 1,000, which is much lower than the unadjusted rate of 38.5 per 1,000, and the adjusted mortality rate of the
nonsmokers is 22.59, which is also lower than the unadjusted rate of 27.5 per 1,000. Simple corrective methods such as covariate standardization often work well, if the researcher is confident that the sources of confounding are known and that all confounding variables are observed (i.e.,
measured). When confounding is overtly understood and measured, it is often called overt bias (Rosenbaum, 2002b). Overt bias may be removed by simple approaches. The following section describes three methods that are equally straightforward and work well when sources of bias are
understood and observed in measurement. 3.2 THREE METHODS FOR DATA BALANCING This section formally describes three conventional methods that help balance data—that is, OLS regression, matching, and stratification. Our interest centers on the key questions of how each
method operates to balance data and to what extent each method accomplishes this goal. 3.2.1 The Ordinary Least Squares Regression 109 The material presented in this section is not new and can be found in most textbooks on regression. Let Y = X3 + e represent a population
regression model, where Y is an (n x 1) vector of the dependent variable for the n participants, X is an (n x p) matrix containing a unit column (i.e., all elements in the column take value 1) and p — 1 independent variables, e is an (n x 1) vector of the error term, and B is a (p x 1) vector of
regression parameters containing one intercept and p — 1 slopes. Assuming repeated sampling and fixed X, and e ~ iid, N(O, 02In), where In is an (n x n) identity matrix and o2 is a scalar, so that 02In = E(ee’) is the variance-covariance matrix of the error term. With the observed data of Y
and X, we can use the least squares criterion to choose the estimate of the parameter vector 3 that makes the sum of the squared errors of the error vector e a minimum, that is, we minimize the quadratic form of the error vector: Table 3.3 Adjusted Mortality Rates Using the Age
Standardization Method (i.e., Adjustment Based on the Cigarette Smokers’ Age Distribution) Taking the partial derivative of | with respect to 3, and letting the partial derivative be zero, we obtain the optimizing vector 3, B = (X'X)-1X"Y. If we have sample data and use lowercase letters to
represent sample variables and statistics, we have the sample estimated vector of regression coefficients as 110 The variance-covariance matrix of b, s2{b} of an order (p x p), can be obtained by the following matrix: where MSE = SSE/(n — p), and SSE = y'[| = H]y, in which | is an identity
matrix with the order of (n x n), and H(n x n) = x(x'x)—1x". Taking the square root of each estimated variance, the researcher obtains standard errors (se) of the estimated regression coefficients, as With estimated regression coefficients and corresponding standard errors, we can perform
statistical significance tests or estimate the confidence intervals of the coefficients as follows: 1. Two-tailed test (when hypothetical direction of b is unknown): HO: 1 = 0 (meaning: X1 has no impact on Y), Ha: 1 # 0 (meaning: X1 has an impact on Y). Calculate t* = b1/se{bl}. If [t*| < t(1 -
0/2; n — p), conclude HO; if [t*] > t(1 — a/2; n — p), conclude Ha. 2. One-tailed test (when one can assume a direction for 3 based on theory): HO: 1 < 0 (meaning: X1 has either a negative or no impact on Y), Ha: 1 > 0 (meaning: X1 has a positive impact on Y). Calculate t* = b1l/se{bl}. If |t*|
<t(1 - a; n - p), conclude HO; if |t*| > t(1 — a; n — p), conclude Ha. 3. Confidence interval of b: (1 — a) x 100% confidence interval can be computed as follows: The Gauss-Markov theorem reveals the best linear unbiased estimator or BLUE property of the OLS regression. The theorem states
that given the assumptions of the classical linear regression model, the least squares estimators, in the class of unbiased linear estimators, have minimum variance; 111 that is, they are BLUES. Using this setup for the OLS regression estimator, the researcher can control for the covariates
and balance data. We now rewrite the regression model Y = XB+etoY =a + TW + X1 + e by treating W as a separate variable and taking it out from the original matrix X. Here W is a dichotomous variable indicating treatment condition (i.e., W = 1, if treated, and W = 0 otherwise). Thus,
X1 now contains one variable less than X and contains no unit column. If the model is appropriately specified—that is, if the X1 contains all variables affecting outcome Y (i.e., one or more of the threats to internal validity have been taken care of by a correct formulation of the X1 matrix)—
and if all variables take a correct functional form, then 1 will be an unbiased and consistent estimate of the average treatment effect of the sample, or However, it is important to note that we can draw this conclusion only when all other assumptions of OLS regression are met, which is
guestionable under many conditions. For now, we will assume that all other assumptions of OLS regression have been met. Recall the interpretation of a regression coefficient: Other things being equal (or ceteris paribus), a one-unit increase in variable x1 will decrease (or increase,
depending on the sign of the coefficient) b1 units in the dependent variable y. This is an appealing feature of OLS: By using least squares minimization, a single regression coefficient captures the net impact of an independent variable on the dependent variable. This mechanism is exactly
how OLS regression controls for covariates and balances data. If the researcher successfully includes all covariates, and if the regression model meets other assumptions, then is an unbiased and consistent estimate of the average treatment effect. In sum, the key feature of OLS
regression, or more precisely the mechanism for balancing data through regression, is to include important covariates in the regression equation and to ensure that the key assumptions embedded in the regression model are plausible. By doing so, the regression coefficient of the
dichotomous treatment variable indicates the average treatment effect in the sample. Employing the regression approach requires making strong assumptions that are often violated in the real world. Key assumptions and issues related to regression analysis are examined in Section 3.6.
3.2.2 Matching Before the development of the new estimation methods for observational data, matching was the most frequently used conventional method for handling observational data. For instance, Rossi and Freeman (1989) described how to balance data by conducting ex post
matching based on observed covariates. Matching can be performed with or without stratification (Rosenbaum, 2002b, p. 80). The central idea of the method is to match each treated participant (xijwi 112 = 1) to n nontreated participants (xj |wj = 0) on x, where x is a vector of matching
variables (i.e., variables that covary with the treatment), and then compare the average of y of the treated participants with the average of y of the matched nontreated participants. The resultant difference is an estimate of the sample average treatment effect. Under this condition, the
standard estimator may be rewritten as where the subscript “match” indicates the matched subsample. For wmatch = 1, the group comprises all treated participants whose matches are found (i.e., the group excludes treated participants without matches), and for wmatch = 0, the group is
composed of all nontreated participants who were matched to treated participants. Denoting M as the original sample size, Mmatch as the matched sample size, Nw=1 the number of treated participants before matching, Nw=0 the number of untreated participants before matching,
Nmatch,w=1 the number of treated participants after matching, and Nmatch,w=0 the number of untreated participants after matching, we have Nmatch,w=1 < Nw=1 (because some treated participants cannot find a match in the nontreated group), and Mmatch < M (because of the loss of
both treated and untreated participants due to nonmatching). The following equality is also true: Nmatch,w=1 = n(Nmatch,w=0) depending on how many matches (i.e., n) the researcher chooses to use. If the researcher chooses to match one participant from the untreated pool to each
treated participant (i.e., n = 1), then Nmatch,w=0 = Nmatch,w=1; if one chooses to match four participants from the untreated pool to each treated participant (i.e., n = 4), then Nmatch,w=1 = 4(Nmatch,w=0), or Nmatch,w=0 is four times as large as Nmatch,w=1. The choice of n deserves
scrutiny. If we choose n = 1 to perform a one-to-one match, then we lose variation in multiple matches who all match to a treated participant. If we choose a large n such as n = 6, then we may not find six matches for each treated participant. Abadie et al. (2004) developed a procedure that
allows the researcher to specify a maximum number of matches. Abadie and Imbens’s (2002) data simulation suggested that n = 4 (i.e., matching up to 4 untreated participants for each treated participant) usually worked well in terms of mean squared error. Rosenbaum (2002b)
recommended the use of optimal matching to solve the problem. These issues are reviewed and extended in later chapters. In sum, the key feature of matching, or more precisely the mechanism for balancing data through matching, involves identifying untreated participants who are similar
on covariates to treated participants and using the mean outcome of the nontreated group as a proxy to estimate the counterfactual of the treated 113 group. 3.2.3 Stratification Stratification is a procedure that groups participants into strata on the basis of a covariate x (Rosenbaum, 2002b).
From the M participants, select N < M participants and group them into S nonoverlapping strata with ns participants in stratum s. In selecting the N units and assigning them to strata, use only the x variable and possibly using a table of random numbers to select units. A stratification formed
in this way is called stratification on x. In addition, an exact stratification on x has strata that are homogeneous in x, so two participants are included in the same stratum only when both have the same value of x; that is, xsi = xsj for all s, i, and j. Exact stratification on x is practical only when x
is of low dimensionality and its coordinates are discrete; otherwise, it will be difficult to locate many participants with the same x. For instance, exact stratification is feasible when we have a discrete age variable with three groups (x = 1, if ages 18 to 40 years; x = 2, if ages 41 to 60 years; and
x = 3, if ages 61 years or older). For the purpose of balancing data, we introduce a stratification procedure based on the percentile of x, called quartile or quintile stratification, that is designed for situations where x is a continuous variable. The quintile stratification procedure involves the
following five steps: 1. Sort data on x so that all participants are in an ascending order of x. 2. Choose participants whose values on x are equal to or less than the first quintile of variable x to form the first stratum (i.e., Stratum 1 contains all participants whose x values are equal to or less
than the value of the 20th percentile of x); then choose participants whose values on x fall into the range bounded by the second quintile to form the second stratum (i.e., Stratum 2 contains all participants whose x is in a range between values of the 21st percentile and the 40th percentile of
X); keep working in this fashion until the fifth stratum is formed. 3. For each stratum s (s =1, 2, ..., 5), perform the standard estimator to calculate the difference of mean outcome y between the treated and where s = 1, 2, 3, 4, 5. nontreated groups; that is, 4. Calculate the arithmetic mean of
the five means to obtain the average treatment effect of the sample using the equation and calculate the variance of the estimated average treatment effect using the equation 114 5. Use these statistics to perform a statistical significance test to determine whether the sample average
treatment effect is statistically significant. Quatrtile stratification is performed in a similar fashion, except the statistic quartile is used and four strata are created. There are more sophisticated methods involving stratification. For instance, in the example using data from the three smoking
groups, Cochran’s (1968) method for balancing the mortality rate data (see Table 3.1) was to choose the number of strata so that each stratum contained a reasonable number of participants from each treatment condition. This explains why there were three stratification schemes in Table
3.1 (i.e., 2 subclasses, 3 subclasses, and 9 to 11 subclasses). Cochran offered theoretical results showing that when the treatment and the control groups overlapped in their covariate distributions (i.e., age in his example), comparisons using five or six subclasses typically removed 90% or
more of the bias presented in the raw comparisons. In sum, the key feature of stratification, or more precisely the mechanism for balancing data through stratification, is to make participants within a stratum as homogeneous as possible in terms of an observed covariate; then the mean
outcome of the nontreated group is used as a proxy to estimate the counterfactual for the treated group. Exact stratification produces homogeneity only for discrete covariates. For instance, if gender is a covariate, stratification will produce two homogeneous strata: all females in one stratum
and all males in another. However, this is not the case for a continuous covariate. With a continuous covariate x and using a quintile stratification, participants within stratum s = 1 are not exactly the same in terms of x. In these circumstances, we must assume that within-stratum differences
on x are ignorable, and participants falling into the same stratum are “similar enough.” The level of exactness on x can be improved by increasing the number of strata S, but the literature has suggested that S = 5 typically works well (Rosenbaum & Rubin, 1984, 1985; Rubin, 1997). 3.3
DESIGN OF THE DATA SIMULATION To help demonstrate the importance of data balancing and how conventional methods can be used to correct for bias under different settings of data generation, we designed a data simulation with a threefold purpose. First, we show how conventional
correction methods work when selection bias is overt and is controlled properly. Second, we use the simulation to show conditions under which the conventional methods do not work. From this, we demonstrate the need for more sophisticated methods for balancing data. Third, we use
these simulated data and their conditions as an organizing theme for the book. We 115 illustrate the reasons why new methods were developed, the specific problem each method was designed to resolve, and the contributions made by each method. Unlike using real data, the simulation
approach creates artificial data based on designed scenarios. The advantage of using artificial data is that the true value of the treatment effect is known in advance. This allows us to evaluate bias directly. In addition, this simulation assumes that we are working with population data, so
sampling variability is ignored. For now, we do not examine the sensitivity of estimated standard errors. However, we return to this issue in Chapter 11. The data generation is based on the following regression model: where x is a covariate or control variable, and w is a dummy variable
indicating treatment conditions (w = 1 treated, and w = 0 control). The simulation creates data of y, x, w, and e according to the following known parameters: a = 10, 3 = 1.5, and Tt = 2. That is, we created data using the following equation: We describe five scenarios that assume different
relationships among y, x, w, and e. In each of the scenarios, the sample size is fixed at 400. Because the parameters are known, we can compare the model-estimated treatment effect with the true value t = 2 to evaluate bias for each scenario. The five scenarios are described in the
following. Scenario 1: w e|x, x e, x w, and e ~ iid, N(O, 1). This scenario assumes the following four conditions: (1) conditional on covariate X, the treatment variable w is independent of the error term e, (2) there is no correlation between covariate x and the error term e, (3) there is no
correlation between covariate x and the treatment variable w, and (4) the error term is identically and independently distributed and follows a normal distribution with mean of zero and variance of 1. This is an ideal condition. The crucial assumption is w e|x, which simulates the ignorable
treatment assignment. In addition, this models the data generated from a randomized study, because these conditions are likely to be met only in data obtained from a randomized experiment. To ensure that the data generation strictly meets the assumption of w e|x, we force x to be an
ordinal variable taking values 1, 2, 3, and 4. The remaining scenarios simulate conditions that are not ideal and involve relaxing one or more of the assumptions included in Scenario 1. Scenario 2: pwe # 0|x, X e, X w, and e ~ iid, N(0, 1). In this scenario, the ignorable treatment assignment
assumption (i.e., w y|x, which is reflected by w 116 e|x) is violated. The scenario indicates that conditional on covariate x, the correlation between the treatment variable w and the error term e is not equal to zero (pwe # 0|x). All other conditions of Scenario 2 are identical to those of Scenario
1. Thus, Scenario 2 simulates the contemporaneous correlation between the error term and the treatment variable. We expect that the estimated treatment effect will be biased and inconsistent.1 Scenario 3: pwx # 0, x e, w e, and e ~ iid, N(0, 1). This scenario relaxes the Scenario 1
condition of independence between the covariate x and the treatment variable w. To simulate real situations, we also allow the covariate x to be a continuous variable to take values on more than four ordinal levels. All other conditions in Scenario 3 remain the same as those in Scenario 1.
Scenario 3 simulates the condition of multicollinearity, which is a typical occurrence when using real data. In this scenario, the ignorable treatment assignment assumption still holds because x is the only source of the correlation with w, and x is used as a control variable. Thus, we can
expect that the results will be unbiased, although it is interesting to see how different methods react to multicollinearity. Scenario 4: pwe # 0|x, pwx # 0, X e, and e ~ iid, N(0, 1). This scenario differs from Scenario 1 by relaxing two of the conditions: (1) the independence between the covariate



x and the treatment variable w and (2) the independence between the treatment variable w and the error term e. Similar to Scenario 3, the covariate x is a continuous variable. All other conditions in Scenario 4 remain the same as those in Scenario 1. In addition, Scenario 4 differs from
Scenario 3 in that it relaxes the assumption of independence between the treatment variable w and the error term e (i.e., it changes w e to pwe # 0|x). Thus, under this scenario, the ignorable treatment assignment no longer holds, which makes Scenario 4 similar to Scenario 2. In addition,
Scenario 4 simulates two data problems: (1) linear correlation between independent variables and (2) the nonignorable treatment assignment. We expect that the estimated treatment effect will be biased and inconsistent. Scenario 5: pxe # 0, pwe # 0, pwx # 0, and e ~ iid, N(0, 1). Scenario 5
relaxes three of the conditions: (1) independence between the covariate x and the treatment variable w, (2) independence between the treatment variable w and the error term e, and (3) independence of the covariate x and the error term e. In addition, we allow the covariate x to be a
continuous variable. This scenario is a further relaxation of assumptions embedded in Scenario 4 (i.e., it changes x e to pxe # 0), and this is the worst-case scenario. Because the ignorable treatment assignment assumption is violated, and the problem of multicollinearity is present, we
expect the estimated treatment effect will be biased and inconsistent. 117 The programming syntax for the data simulation is available at the companion webpage for this book. We employed the simple matching estimator (Abadie et al., 2004) to produce results. The algorithm by Abadie et
al. (2004) is slightly different from the conventional matching estimator because it matches with replacement (see Chapter 8). Readers may replicate the analysis to verify the findings. 3.4 RESULTS OF THE DATA SIMULATION Table 3.4 presents descriptive statistics for the data and
estimated treatment effects produced using the three methods under Scenario 1. The descriptive statistics show that conditions described by the design of Scenario 1 are met: that is, w is not correlated with e (pwe = .01), x is not correlated with e (pxe = .03), x is not correlated with w (pxw =
.03), the mean of e is close to 0, and the standard deviation of e is close to 1. Figure 3.1 is the scatterplot of data x and y under Scenario 1. The results show that under the ideal conditions of Scenario 1, all three methods accurately estimate the treatment effect, and all biases are close to
zero. Among the three methods, regression worked the best with a bias of .011, stratification worked second best with a bias of .016, and matching worked relatively the worst with a bias of .029. Note that although the three methods are technically different, each method estimated a
treatment effect very close to the true parameter. The conditions of data generation under Scenario 1 are stringent. In reality, a well-designed and well-implemented randomized experiment is likely the only kind of study that could produce data in such an ideal fashion. Table 3.4 Data
Description and Estimated Effects by Three Methods: Scenario 1 Figure 3.1 Scatterplot of Data Under Scenario 1 118 Table 3.5 presents descriptive statistics of the data and estimated treatment effects using three methods under Scenario 2. The descriptive statistics show that conditions
described by Scenario 2 are met; that is, w is correlated with e (pwe = .61), x is not correlated with e (pxe = —.04), x is not correlated with w (pxw = .02), the mean of e is close to 0, and the standard deviation of e is close to 1. Figure 3.2 is the scatterplot of data x and y under Scenario 2.
Under the conditions of Scenario 2, each of the three methods produced a biased estimate of the treatment effect. Specifically, all three methods estimated a treatment effect that was 1.13 units higher than the true value, or a 57% overestimation. In particular, the OLS result shows that the
bias is in an upward direction (i.e., inflated treatment effect), when the treatment variable w is positively correlated with the error (i.e., pwe = .61). The issue of inflated treatment effect was discussed theoretically in Chapter 2, and we showed that when the error term and the independent
variable are positively correlated, the OLS estimated slope is higher than the true slope (see Figure 2.1). This upward bias is exactly what happens when conditions are similar to those in Scenario 2. Table 3.5 Data Description and Estimated Effects by Three Methods: Scenario 2 119 Figure
3.2 Scatterplot of Data Under Scenario 2 Imagine a real study such as Scenario 2. In an observational data collection (where an independent variable of interest is not manipulated), suppose w is a state indicating addiction to illegal drugs, y is a measure of mental status (i.e., a high value on
y indicates more psychological problems), and the data were obtained by surveying a representative sample of a population. Because the data are observational and exist naturally (i.e., representing a population) without randomization, participants who used illegal drugs were likely to have
high values on y. Although x is an important covariate of y (i.e., pxy = .69), specifying only one of such covariates in the regression model is not sufficient. When we note that there is a high correlation between the treatment and the error term (i.e., pwe = .61), it becomes clear that additional
covariates were omitted in the regression model. Under this condition, in addition to nonignorable treatment assignment, we encounter the problem of omitted covariates, which is also known as selection on unobservables (see Section 2.3 in Chapter 2). As a 120 result of the combination of
these two problems, the estimated treatment effect (i.e., the net impact of addiction to illegal drugs on psychological problems) is biased upward. Although theory might tell us that abusing drugs causes mental problems, our data would overestimate the impact of drug abuse on mental
status. This overestimation is true regardless of which one of the three analytic methods is used. It is for this reason that we can conclude that conventional correction methods are not appropriate (i.e., do not work well) in conditions such as those described for Scenario 2. Under this
scenario, advanced analytic approaches must be considered. But these too are subject to bias as a result of unobserved heterogeneity, and it is advisable to assess the potential effect of hidden selection bias related to omitted variables by conducting sensitivity analyses, as discussed in
Chapter 11. Table 3.6 presents descriptive statistics of the data and estimated treatment effects produced using three analytic methods under the conditions of Scenario 3. The descriptive statistics show that conditions described by Scenario 3 are met: that is, w is correlated with x (pwx =
.56), x is not correlated with e (pxe = .07), w is not correlated with e (pwe = .03), the mean of e is close to 0, and the standard deviation of e is close to 1. Figure 3.3 is the scatterplot of data x and y under Scenario 3. Under Scenario 3, the ignorable treatment assignment still holds;
therefore, the estimated treatment effect produced using the regression method is unbiased. Furthermore, the presence of multicollinearity does not affect the estimation of treatment effect, even though it affects the significance test; however, the significance test is irrelevant in the current
discussion about the population parameters. These results confirm that among the three analytic methods, regression worked the best, with a bias of —.025 (i.e., a bias slightly downward); matching worked reasonably well, with a bias of .052; and stratification worked in a problematic way
with a bias of .267 (or 13% larger than the true value). This example suggests that the methods react differently to multicollinearity and are not equally good in terms of bias correction. Table 3.7 presents descriptive statistics and estimated treatment effects using three methods under
Scenario 4. The descriptive statistics show that conditions described by Scenario 4 are met; that is, w is correlated with e (pwe = .59), w is correlated with x (pwx = .55), x is not correlated with e (pxe = .06), the mean of e is close to 0, and the standard deviation of e is close to 1. Figure 3.4
is the scatterplot of data x and y under Scenario 4. When this scatterplot is compared with the scatterplot for Scenario 3, we see a more systematic concentration of data points, as all treated cases are clustered in the upper panel, and all untreated cases are clustered in the lower panel.
This pattern is produced by the correlation between w and e. This scenario is more likely to occur in real applications when researchers think that they have controlled for covariates, but the available controls are not sufficient and/or relevant covariates are omitted. 121 Thus, we encounter
the same problem of selection on unobservables as that in Scenario 2. These results show that all three methods are biased. Under the conditions of Scenario 4, the three methods are ranked for bias as follows: Regression produced the lowest bias of 1.647, matching produced higher bias
at 1.866, and stratification produced the highest bias at 2.024. The implications are clear. When treatment assignment is not ignorable and when multicollinearity is present, no conventional method produces unbiased estimation of treatment effects. Table 3.8 presents descriptive statistics
and estimated treatment effects using three methods under Scenario 5. The descriptive statistics show that conditions described by the design of Scenario 5 are met; that is, x is correlated with e (pxe = .74), w is correlated with e (pwe = .56), w is correlated with x (pwx = .57), the mean of e
is close to 0, and the standard deviation of e is close to 1. Figure 3.5 is the scatterplot of data x and y under Scenario 5. Note that Scenario 5 relaxes one assumption of Scenario 4 (i.e., it changes x e to pxe # 0). Under this scenario, both w and x correlate with the error term, and the two
independent variables w and x correlate with one another. Among all five scenarios, Scenario 5 assumes the weakest conditions for data generation, which would lead us to expect that the results would be the worst. Indeed, the estimated treatment effects produced with each method are
biased, and the methods are ranked in terms of bias as follows: Regression produced the lowest bias (i.e., .416), matching produced the second lowest bias estimates (i.e., .492 for n = 1 and .747 for n = 4, respectively), and stratification produced the highest bias (i.e., .800). However,
contrary to our expectation, all biases were lower than those produced by the methods under Scenario 4. Although Scenario 5 is the worst-case scenario, the results are not the most severe. This interesting finding indicates that data conditions often work in complicated ways, and results
may not conform to our expectations. Overall, our findings underscore the importance of assumptions, the risk of biased parameter estimation when conventional corrective methods are used, and the need to develop models with greater sophistication. Table 3.6 Data Description and
Estimated Effects by Three Methods: Scenario 3 122 Figure 3.3 Scatterplot of Data Under Scenario 3 3.5 IMPLICATIONS OF THE DATA SIMULATION Our data simulation, or a three-methods-and-five-scenarios design, illuminates the conditions under which common data balancing
strategies correct selection bias. We purposely created challenging data environments, but they are not dissimilar to those encountered in routine program evaluation. Contending with such challenges has motivated statisticians and econometricians to seek new methods. The data
simulation has at least three implications in developing these methods. Table 3.7 Data Description and Estimated Effects by Three Methods: Scenario 4 123 Figure 3.4 Scatterplot of Data Under Scenario 4 First, simple methods of data balancing work well only under ideal conditions (i.e.,
Scenario 1), and under ideal conditions, all three methods work equally well. When the ignorable treatment assignment assumption holds but independent variables are correlated (i.e., Scenario 3), the regression and matching methods provide unbiased estimation of treatment effect.
However, estimation produced with the stratification method is problematic. When the ignorable treatment assignment assumption is violated (i.e., Scenarios 2, 4, and 5), none of the three conventional correction methods provides an unbiased estimation of the treatment effect. Second,
covariance control does not automatically correct for nonignorable treatment assignment. In all five scenarios, x is highly correlated with y (i.e., pxy ranges from .69 to .92), indicating that x is an important covariate of y in all scenarios. However, there are only two scenarios under which the
ignorable treatment assignment assumption holds (i.e., Scenarios 1 and 3). The data 124 simulation clearly shows that only under these two scenarios did three conventional methods produce unbiased estimates. Under all other scenarios, the three methods failed. Thus, common methods
controlling for covariance do not necessarily correct for nonignorable treatment assignment. Finally, the findings suggest that we must understand data generation before running regressions and other statistical models. As Berk (2004) noted, data generation is important for inference drawn
from analyses: Table 3.8 Data Description and Estimated Effects by Three Methods: Scenario 5 Figure 3.5 Scatterplot of Data Under Scenario 5 [Both statistical inference and causal inference] depend fundamentally on how the data used in the regression analysis were generated: How did
125 nature and the investigator together produce the data then subjected to a regression analysis? Was there a real intervention? Can the data be properly viewed as a random sample from a real population? How were key variables measured? There is precious little in the data
themselves that bear on such matters. One must bring to the regression analysis an enormous amount of information about data, and this information will, in practice, do some very heavy lifting. (pp. 1-2) In addition, the three-methods-and-five-scenarios design offers a useful tool for
thinking about the key features of new approaches for evaluation. We use this design as an organizing theme to assess the methods described in this book. 1. In the data simulation, we only have one control variable, x, whereas in practice, there are typically many control variables. When
the number of control variables increases, the conventional ex post matching often fails because, under such conditions, it is difficult to match treated cases to untreated cases on multiple characteristics: This problem is known as the dimensionality of matching. A simple example helps
illustrate this problem. If you use only three demographic variables (i.e., age prior to receiving treatment, gender, and race/ethnicity), you may be able to match 90% of the treated participants to the untreated participants, assuming that the sample is of a reasonably large size (e.g., N = 500)
and the two groups have equal size. Even with three matching variables, chances are that some cases would be lost because they are so different that no match would be available. Depending on the nature of the sample and, of course, depending on how accurate you want matching on
age to be (i.e., Should matches be exact with, say, 25.09-year-olds, or could the age be matched within an age range, such as matching participants who fall within 20 to 30 years of age?), 90% is merely a guess for the percentage of possible matches. Now suppose you add one matching
variable, which is a depression scale ranging from 40 to 100. With this addition, it is likely that you will match still fewer treated participants to the untreated participants. With every added dimension, the percentage of successful matches declines. This dimensionality problem motivated
researchers to develop several new approaches. These include (a) a two-step estimator that uses probabilities of receiving treatment (Heckman, 1978, 1979; Maddala, 1983), (b) propensity score matching (Rosenbaum & Rubin, 1983), and (c) the use of vector norms (Abadie & Imbens,
2002, 2006; Rubin, 1980a). These approaches to the problem of dimensionality in matching are examined in Chapters 4, 5, and 8, respectively. 2. Propensity score matching may be thought of as a slightly more complex method that combines the two conventional methods of regression
and matching. That is, the analyst first creates propensity scores for all study participants, such that multiple characteristics are reduced to a one-dimensional score. The analyst 126 then matches the scores between treated and nontreated cases to create a new sample. Last, the analyst
performs a secondary analysis, such as regression, on the matched sample. Note that in the second stage, many kinds of multivariate analysis may be performed (e.g., regression-type models such as the random coefficients model, multiple-group structural equation modeling, survival
analysis, generalized linear models). This method of propensity score matching is described in Chapter 5. 3. Propensity score matching can also be thought of as a combination of matching and stratification. When multiple matching variables are reduced to a one-dimensional propensity
score, the analyst can match treated cases to nontreated cases on the one-dimensional score and then use stratification or subclassification to estimate treatment effect. As such, regression or other types of second-stage modeling are not used (Rosenbaum & Rubin, 1984). Propensity
score matching in conjunction with subclassification is described in Chapter 6. 4. Propensity scores can be used to form subclasses without matching. Using quintiles of propensity scores, the analyst can divide the sample into five equally sized subclasses, perform a stratified multivariate
analysis for each stratum, and then aggregate the treatment effects across all five strata to discern whether the treatment effect for the entire sample is statistically significant. The primary advantage of this method is its capacity to analyze virtually any type of outcome measure (e.g.,
categorical, ordinal, or time-to-event), and the capacity to use more complicated methods, such as structural equation modeling, in within-stratum analytics. This, of course, is conditioned on a sufficiently large sample within quintiles. Propensity score subclassification is described in Chapter
6. 5. Propensity scores can be used as sampling weights and analyzed in an outcome model that takes differential information from each study subject, depending on the subject’s conditional probability of falling in a treatment condition. Under this context, the analytic method can be viewed
as an application of propensity scores to a regression or regression-type model. This approach shares the same advantages as those for propensity score subclassification—namely, it allows the analyst to model noncontinuous nonnormal outcome variables and perform complicated
analysis such as structural equation modeling. Propensity score weighting is described in Chapter 7. 6. The analyst can also use a single method of matching to estimate the treatment effect (i.e., a method without using regression and stratification). Sophisticated approaches have been
developed to improve matching as a method for estimation of the treatment effect. Abadie and Imbens (2002, 2006), 127 for example, developed matching estimators that use the vector norm (i.e., the Mahalanobis metric distance or the inverse of sample variance matrix) to estimate the
average treatment effect for the treated group, the control group, and the sample, as well as similar effects for the population. The matching estimator method is described in Chapter 8. Heckman, Ichimura, and Todd (1997, 1998) developed an alternative approach for matching using
nonparametric regression or, more precisely, local linear regression to match treated participants to untreated participants. This method provides a robust and efficient estimator of the average treatment effect for the treated group. Matching with local linear regression is described in Chapter
9. 7. In the data simulation, w was a dichotomous variable indicating treatment conditions: treated or nontreated. The propensity score method can easily be expanded to include multiple treatment conditions or to include the analysis of doses of treatment (Hirano & Imbens, 2004; Imbens,
2000; Rosenbaum, 2002b). This method of modeling treatment dosage is described in Chapter 10. 8. Rubin (1997) summarized three limitations of propensity score matching, one of which is that propensity score matching cannot control for unobserved selection bias. That is, propensity
score matching cannot adjust for hidden selection bias, and therefore, there is no solution to Scenario 2. (We give further attention to this problem in Chapter 11, where we compare sampling properties of six models through a Monte Carlo study.) Although selection bias is hidden, the
magnitude of bias may be estimated through sensitivity analysis, which was developed by Rosenbaum (2002b) and constitutes a seminal contribution to propensity score analysis. As mentioned earlier, the sensitivity analysis method is described in Chapter 11. 9. Identified by Rubin (1997),
a second limitation of propensity score matching is that the method does not differentially handle covariates based on the relation to outcomes. That is, the method does not treat a covariate that is related to treatment assignment but not to outcome differently from a covariate that is related
to both treatment assignment and outcome. This problem can be viewed as a variant of Scenario 4, for which there is no desirable solution currently available; however, James Robins's marginal structural modeling appears promising. We revisit this issue in Chapter 12. 10. Scenario 5
features a combination of several weak assumptions about data generation. Although the data generation is complicated, this scenario is realistic and likely to occur in practice. We revisit this scenario in Chapter 11 and underscore that—even with advanced methods—unobserved
heterogeneity always holds the potential to bias effect estimations. 128 3.6 KEY ISSUES REGARDING THE APPLICATION OF OLS REGRESSION Among all statistical approaches, the OLS regression model is perhaps the most important because it not only serves as the foundation for
advanced models but also is the key to understanding new approaches for the evaluation of treatment effects. We have seen conditions under which the OLS regression provides (or does not provide) unbiased estimation of treatment effects. To conclude the current chapter, we review
important assumptions embedded in the OLS regression and fundamental issues with regard to the application of OLS regression. Our review follows Kennedy (2003) and Berk (2004). When applying the OLS regression model, five basic assumptions must be made about the data structure:
1. The dependent variable is a linear function of a specific set of independent variables plus a disturbance term. 2. The expected value of the disturbance term is zero. 3. The disturbances have a uniform variance and are uncorrelated with one another. 4. The observations on the
independent variables are considered fixed in repeated samples. 5. The number of observations is greater than the number of independent variables, and no exact linear relationships exist between independent variables (Kennedy, 2003). These assumptions are crucial for consistent and
unbiased estimation in regression models. In practice, it is important to understand the conditions under which these assumptions are violated, to be attentive to conducting diagnostic tests to detect violations, and to take remedial actions if violations are observed. From Berk (2004),
regression may be used to draw causal inferences when four conditions are satisfied. First, “clear definitions of the relevant concepts and . . . good information about how the data were generated” are required (Berk, 2004, p. 101, used with permission). Causal effects involve not only the
relationships between inputs and outputs, not only the relationships between observable and unobservable outcomes, but also a number of additional features related to how nature is supposed to operate. Berk recommended using Freedman’s response schedules framework to infer causal
effects. The available theories, including those used in economics, are mostly silent on how to characterize the role of the errors in the regression formulation. In contrast, Freedman’s response schedule framework requires that errors be treated as 129 more than a nuisance to be
dispatched by a few convenient assumptions. From this perspective, causal stories should include a plausible explanation of how the errors are generated in the natural world. Second, the ceteris paribus condition must be assumed. In warning that there are typically a host of ceteris paribus
conditions that never exist in real life, Berk (2004) argued, “Covariance adjustments are only arithmetic manipulations of the data. If one decides to interpret those manipulations as if some confounder were actually being fixed, a very cooperative empirical world is required” (p. 115). Third,
causal relationships must be anticipated in data generation and analysis. Berk (2004, p. 196) objected in part to Pearl’s (2000) claim that the analyst can routinely carry out causal inference with regression analysis (or, more generally, structural equation modeling) of observational data.
Last, Berk (2004) argued that credible causal inferences cannot be drawn from regression findings alone. The output from regression analysis is merely a way to characterize the conditional distribution of the response variable, given a set of predictors. Standardized coefficients do not
represent the causal importance of a variable. Contributions to explained variance for different predictors do not represent the causal importance of a variable. A good overall fit does not demonstrate that a causal model is correct. Moreover, there are no regression diagnostics, he argued,
through which causal effects can be demonstrated with confidence. There are no specification tests through which causal effects can be demonstrated. There are no mathematical formalisms through which causal effects can be demonstrated. In short, Berk argues that causal inference
rests first and foremost on a credible response schedule. Without a credible response schedule and in the absence of a well-supported model (i.e., hypothesized relationships based on prior research and theory), the potential problems with regression-based causal models outweigh existing
remedial strategies (Berk, 2004, p. 224). 3.7 CONCLUSION In this chapter, we reviewed conditions under which the fundamental assumption of ignorable treatment assignment is violated, and we discussed three conventional approaches (i.e., regression, matching, and stratification) to
balance data in the presence of nonignorable treatment assignment (i.e., selection bias). In a simulation based on five scenarios of data generation, conventional methods worked well only in an ideal scenario in which the ignorable treatment assignment assumption is met. Unfortunately,
these ideal conditions are most likely to be satisfied in a randomized experiment. In social and health sciences evaluations involving the use of observational data, they are unlikely to be satisfied. Thus, the findings suggest that the use of OLS regression to control for covariates and balance
data in the absence of a randomized design 130 may be unwarranted in many settings where a causal inference is desired. New methods to estimate treatment effects when treatment assignment is nonignorable are needed. NOTE 1. However, in our current data simulation, we cannot see
the consequence of inconsistency, because the current simulation does not look into sampling variability and sampling properties when sample size becomes extremely large. 131 CHAPTER 4 Sample Selection and Related Models This chapter describes two models: the sample selection
model and the treatment effect model. Heckman'’s (1974, 1978, 1979) sample selection model was developed using an econometric framework for handling limited dependent variables. It was designed to address the problem of estimating the average wage of women using data collected
from a population of women in which women who stayed at home—who were not in the labor market—were excluded by self-selection. Based on this data set, Heckman’s original model focused on the incidental truncation of a dependent variable. Maddala (1983) extended the sample
selection perspective to the evaluation of treatment effectiveness. We review Heckman’s model first because it not only offers a theoretical framework for modeling sample selection but is also based on what was at the time a pioneering approach to correcting selection bias. Equally
important, Heckman’s model lays the groundwork for understanding the treatment effect model. The sample selection model is an important contribution to program evaluation; however, the treatment effect model is the focus of this chapter because this model offers practical solutions to
various types of evaluation problems. Section 4.1 describes the main features of the Heckman model. Section 4.2 reviews the treatment effect model. Section 4.3 provides an overview of the Stata programs that are applicable for estimating the models described here. Examples in Section
4.4 illustrate the treatment effect model and show how to use this mode to solve typical evaluation problems. Section 4.5 concludes with a review of key points. 4.1 THE SAMPLE SELECTION MODEL Undoubtedly, Heckman’s sample selection model is a seminal contribution to 20th-
century program evaluation. The sample selection model triggered both a rich theoretical discussion on modeling selection bias and the development of new statistical procedures to address selection effects. Heckman’s key contributions to program evaluation include the following: (a) He
provided a 132 theoretical framework that emphasized the importance of modeling the dummy endogenous variable; (b) his model was the first attempt to estimate the probability (i.e., the propensity score) of a participant being in one of the two conditions indicated by the endogenous
dummy variable, and then used the estimated propensity score model to estimate coefficients of the regression model; (c) he treated the unobserved selection factors as a problem of specification error or a problem of omitted variables and corrected for bias in the estimation of the outcome
equation by explicitly using information gained from the model of sample selection; and (d) he developed a creative two-step procedure by using the simple least squares algorithm. To understand Heckman’s model, we first review concepts related to the handling of limited dependent
variables. 4.1.1 Truncation, Censoring, and Incidental Truncation Due to censoring and truncation, limited dependent variables are common in social and health data. Truncation, which is an effect of data gathering rather than data generation, occurs when sample data are drawn from a
subset of a larger population of interest. Thus, a truncated distribution is part of a larger, untruncated distribution. For instance, assume that an income survey was administered to a limited subset of the population (e.g., those whose incomes are above the poverty threshold). In the data
from such a survey, the dependent variable will be observed only for a portion of the whole distribution. The task of modeling is to use that limited information—a truncated distribution—to infer the income distribution for the entire population. Censoring occurs when all values in a certain
range of a dependent variable are transformed to a single value. Using the above example of population income, censoring differs from truncation in that the data collection may include the entire population, but below-poverty-threshold incomes are coded as zero. Under this condition,
researchers may estimate a regression model for a larger population using both the censored and the uncensored data. Censored data are ubiquitous. They include (a) household purchases of durable goods, in which low expenditures for durable goods are censored to a zero value (the
Tobit model, developed by James Tobin in 1958, is the most widely known model for analyzing this kind of dependent variable); (b) number of extramarital affairs, in which the number of affairs beyond a certain value is collapsed into a maximum count; (c) number of hours worked by women
in the labor force, in which women who work outside the home for a low number of hours are censored to a zero value; and (d) number of arrests after release from prison, where arrests beyond a certain value are scored as a maximum (Greene, 2003). The central task of analyzing limited
dependent variables is to use the truncated distribution or censored data to infer the untruncated or uncensored distribution for the entire population. In the context of regression analysis, we 133 typically assume that the dependent variable follows a normal distribution. The challenge then is
to develop moments (mean and variance) of the truncated or censored normal distribution. Theorems of such moments have been developed and can be found in textbooks on the analysis of limited dependent variables. In these theorems, moments of truncated or censored normal
distributions involve a key factor called the inverse Mills ratio, or hazard function, which is commonly denoted as A. Heckman’s sample selection model uses the inverse Mills ratio to estimate the outcome regression. In Section 4.1.3, we review moments for sample selection data and the
inverse Mills ratio. A concept closely related to truncation and censoring, or a combination of the two concepts, is incidental truncation. Indeed, it is often used interchangeably with the term sample selection. From Greene (2003), suppose you are funded to conduct a survey of persons with
high incomes and that you define eligible respondents as those with a net worth of $500,000 or more. This selection by income is a form of truncation—but it is not quite the same as the general case of truncation. The selection criterion (e.g., at least $500,000 net worth) does not exclude
those individuals whose current income might be quite low, although they had previously accrued high net worth. Greene (2003) explained by saying, Still, one would expect that, on average, individuals with a high net worth would have a high income as well. Thus, the average income in
this subpopulation would in all likelihood also be misleading as an indication of the income of the typical American. The data in such a survey would be nonrandomly selected or incidentally truncated. (p. 781) Thus, sample selection or incidental truncation refers to a sample that is not
randomly selected. It is in situations of incidental truncation that we encounter the key challenge to the entire process of evaluation, that is, the departure of evaluation data from the classic statistical model that assumes a randomized experiment. This challenge underscores the need to
model the sample selection process explicitly. We encounter these problems explicitly and implicitly in many data situations. Consider the following from Maddala (1983). Example 1: Married women in the labor force. This is the problem Heckman (1974) originally considered under the
context of shadow prices (i.e., women'’s reservation wage or the minimum wage rate at which a woman who is at home might accept marketplace employment), market wages, and labor supply. Let y* be the reservation wage of a stay-at-home woman (or, homemaker) based on her
valuation of time in the household. Let y be the market wage based on an employer’s valuation of her effort in the labor force. According to Heckman, a woman participates in the labor force if y > y*. Otherwise, a woman is not considered a participant in the labor force. In any given sample,
we have observations only on y for those women who participate in the labor force, and 134 we have no observation on y for the women not in the labor force. For women not in the labor force, we only know that y* > y. In other words, the sample is not randomly selected, and we need to use
the sample data to estimate the coefficients in a regression model explaining both y* and y. As explained in the following by Maddala (1983), with regard to women who are not in the labor market and who work at home, the problem is truncation, or more precisely incidental truncation, not
censoring, because we do not have any observations on either the explained variable y or the explanatory variable x in the case of the truncated regression model if the value of y is above (or below) a threshold. . . . In the case of the censored regression model, we have data on the
explanatory variables x for all the observations. As for the explained variable y, we have actual observations for some, but for others we know only whether or not they are above (or below) a certain threshold. (pp. 5—6) Example 2: Effects of unions on wages. Suppose we have data on
wages and personal characteristics of workers that include whether the worker is a union member. A naive way of estimating the effects of unionization on wages is to estimate a regression of wage on the personal characteristics of the workers (e.g., age, race, sex, education, and
experience) plus a dummy variable that is defined as D = 1 for unionized workers and D = 0 otherwise. The problem with this regression model lies in the nature of D. This specification treats the dummy variable D as exogenous when D is not exogenous. In fact, there are likely many factors
affecting a worker’s decision whether to join the union. As such, the dummy variable is endogenous and should be modeled directly; otherwise, the wage regression estimating the impact of D will be biased. We have seen the consequences of the naive treatment of D as an exogenous
variable in both Chapters 2 and 3. Example 3: Effects of fair-employment laws on the status of African American workers. Consider a regression model (Landes, 1968) relating to the effects of fair-employment legislation on the status of African American workers y i = aXi + 3Di + ui, where yi
is the wage of African Americans relative to that for whites in state i, Xi is the vector of exogenous variables for state i, Di = 1 if state i has a fair-employment law (Di = 0 otherwise), and ui is a residual. Here the same problem of the endogeneity of D is found as in our second example, except
that the unit of analysis in the previous example is individual, whereas the unit in the current example is state i. Again, Di is treated as exogenous when in fact it is endogenous. “States in which African Americans would fare well without a fair-employment law may be more likely to pass such
a law if legislation depends on the consensus” (Maddala, 1983, p. 8). Heckman (1978) observed, 135 An important question for the analysis of policy is to determine whether or not measured effects of legislation are due to genuine consequences of legislation or to the spurious effect that the
presence of legislation favorable to blacks merely proxies the presence of the pro-black sentiment that would lead to higher status for blacks in any event. (p. 933) Example 4: Compulsory school attendance laws and academic or other outcomes. The passage of compulsory school
attendance legislation is itself an endogenous variable. Similar to Example 3, it should be modeled first. Otherwise, the estimation of the impact of such legislation on any outcome variable risks bias and inconsistency (Edwards, 1978). Example 5: Returns of college education. In this
example, we are given income for a sample of individuals, some with a college education and others without. Because the decision whether to attend college is a personal choice determined by many factors, the dummy variable (attending vs. not attending) is endogenous and should be
modeled first. Without modeling this dummy variable first, the regression of income showing the impact of college education would be biased, regardless of whether the regression model controlled for covariates such as IQ (intelligence quotient) or parental socioeconomic status. Today,
these illustrations are considered classic examples, and they have been frequently cited and discussed in the literature on sample selection. The first three examples were discussed by Heckman (1978, 1979) and motivated his work on sample selection models. These examples share three
features: (1) The sample being inferred was not generated randomly, (2) a binary explanatory variable was endogenous rather than exogenous, and (3) sample selection or incidental truncation must be considered in the evaluation of the impact of such a dummy variable. However, there is
an important difference between Example 1 and the other four examples. In Example 1, we observe only the outcome variable (i.e., market wage) for women who participate in the labor force (i.e., only for participants whose Di = 1; we do not observe the outcome variable for women whose
Di = 0), whereas in Examples 2 through 5, the outcome variables (i.e., wages, the wage status of African American workers relative to that of white workers, academic achievement, and income) for both the participants (or states) whose Di = 1 and Di = 0 are observed. Thus, Example 1 is a
sample selection model, and the other four examples illustrate the treatment effect model. The key point is the importance of distinguishing between these two types of models: (1) the sample selection model (i.e., the model analyzing outcome data observed only for Di = 1) and (2) the
treatment effect model (i.e., the model analyzing outcome data observed for both Di = 1 and Di = 0). Both models share common characteristics and may be viewed as Heckman-type models. However, the treatment effect model focuses on program evaluation, 136 which is not the intent of
the sample selection model. This distinction is important when choosing appropriate software. In the Stata software, for example, the sample selection model is estimated by the program heckman, and the treatment effect model is estimated by the program treatreg; we elaborate on this
point in Section 4.3. 4.1.2 Why Is It Important to Model Sample Selection? Although the topic of sample selection is ubiquitous in both program evaluation and observational studies, the importance of giving it a formal treatment was largely unrecognized until Heckman’s (1974, 1976, 1978,
1979) work and the independent work of Rubin (1974, 1978, 1980b, 1986). Recall that, in terms of causal inference, sample selection was not considered a problem in randomized experiments because randomization renders selection effects irrelevant. In nonrandomized studies,
Heckman’s work emphasized the importance of modeling sample selection by using a two-step procedure or switching regression, whereas Rubin’s work drew the same conclusion by applying a generalization of the randomized experiment to observational studies. Heckman focused on two
types of selection bias: self-selection bias and selection bias made by data analysts. Heckman (1979) described self-selection bias as follows: One observes market wages for working women whose market wage exceeds their home wage at zero hours of work. Similarly, one observes
wages for union members who found their nonunion alternative less desirable. The wages of migrants do not, in general, afford a reliable estimate of what nonmigrants would have earned had they migrated. The earnings of manpower trainees do not estimate the earnings that nontrainees
would have earned had they opted to become trainees. In each of these examples, wage or earnings functions estimated on selected samples do not in general, estimate population (i.e., random sample) wage functions. (pp. 153-154) Heckman argued that the second type of bias, selection



bias made by data analysts or data processors, operates in much the same fashion as self-selection bias. In their later work, Heckman and his colleagues generalized the problem of selectivity to a broad range of social experiments and discussed additional types of selection biases (e.qg.,
see Heckman & Smith, 1995). From Maddala (1983), Figure 4.1 describes three types of decisions that create selectivity (i.e., individual selection, administrator selection, and attrition selection). In summary, Heckman’s approach underscores the importance of modeling selection effects.
When selectivity is inevitable, such as in observational 137 studies, the parameter estimates from a naive ordinary least squares (OLS) regression model are inconsistent and biased. Alternative analytic strategies that model selection must be explored. 4.1.3 Moments of an Incidentally
Truncated Bivariate Normal Distribution The theorem for moments of the incidentally truncated distribution defines key functions such as the inverse Mills ratio under the setting of a normally distributed variable. Our discussion follows Greene (2003). Figure 4.1 Decision Tree for Evaluation
of Social Experiments Source: Maddala (1983, p. 266). Reprinted with the permission of Cambridge University Press. Suppose that y and z have a bivariate normal distribution with correlation p. We are interested in the distribution of y given that z exceeds a particular value a. The truncated
joint density of y and z is Given the truncated joint density of y and z, given that y and z have a bivariate normal distribution with means pyy and pz, standard deviations oy and oz, and correlation p, the moments (mean and variance) of the incidentally truncated variable y are as follows
(Greene, 2003, p. 781): where a is the cutoff threshold, cz = (a — pz)/oz, A(cz) = @(cz)/[1 — P(cz)], d(cz) 138 = A(cz) [M(cz) — cz], ®(cz) is the standard normal density function, and ®(cz) is the standard cumulative distribution function. In the preceding equations, A(cz) is called the inverse Mills
ratio and is used in Heckman’s derivation of his two-step estimator. Note that in this theorem, we consider moments of a single variable; in other words, this is a theorem about univariate properties of the incidental truncation of y. Heckman’s model applied and expanded the theorem to a
multivariate case in which an incidentally truncated variable is used as a dependent variable in a regression analysis. 4.1.4 The Heckman Model and Its Two-Step Estimator A sample selection model always involves two equations: (1) the regression equation considering mechanisms
determining the outcome variable and (2) the selection equation considering a portion of the sample whose outcome is observed and mechanisms determining the selection process (Heckman, 1978, 1979). To put this model in context, we revisit the example of the wage earning of women
in the labor force (Example 1, Section 4.1.1). Suppose we assume that the hourly wage of women is a function of education (educ) and age (age), whereas the probability of working (equivalent to the probability of wage being observed) is a function of marital status (married) and number of
children at home (children). To express the model, we can write two equations, the regression equation of wage and the selection equation of working: wage is observed if Note that the selection equation indicates that wage is observed only for those women whose wages were greater than
0 (i.e., women were considered as having participated in the labor force if and only if their wage was above a certain threshold value). Using a zero value in this equation is a normalization convenience and is an alternate way to say that the market wage of women who participated in the
labor force was greater than their reservation wage (i.e., y > y*). The fact that the market wage of homemakers (i.e., those not in the paid labor force) was less than their reservation wage (i.e., y < y*) is expressed in the preceding model through the fact that these women’s wage was not
observed in the regression equation; that is, it was incidentally truncated. The selection model further assumes that ul and u2 are correlated to have a nonzero correlation p. This example can be expanded to a more general case. For the purpose of modeling any sample selection process,
two equations are used to express the determinants of outcome yi: 139 and where xi is a vector of exogenous variables determining outcome yi, and is a latent endogenous variable. If is greater than the threshold value (say value 0), then the observed dummy variable wi = 1, and otherwise
wi = 0; the regression equation observes value yi only for wi = 1; z i is a vector of exogenous variables determining the selection process or the outcome of ; ®(¢) is the standard normal cumulative distribution function; and uj and ¢j are error terms of the two regression equations and
assumed to be bivariate normal, with mean zero and covariance matrix Given incidental truncation and censoring of y, the evaluation task is to use the observed variables (i.e., y, z, X, and probably w) to estimate the regression coefficients b that are applicable to sample participants whose
values of w equal both 1 and 0. The sample selection model can be estimated by either the maximum likelihood method or the least squares method. Heckman'’s two-step estimator uses the least squares method. We review the two-step estimator first. The maximum likelihood method is
reviewed in the next section as a part of a discussion of the treatment effect model. To facilitate the understanding of Heckman’s original contribution, we use his notations that are slightly different from those used in our previous discussion. Heckman first described a general model
containing two structural equations. The general model considers continuous latent random variables and and may be expressed as follows: where X1i and X2i are row vectors of bounded exogenous variables; di is a dummy variable defined by and 140 Heckman next discussed six cases
where the general model applies. His interest centered on the sample selection model, or Case 6 (Heckman, 1978, p. 934). The primary feature of Case 6 is that structural shifts in the equations are permitted. Furthermore, Heckman allowed that was observed, so the variable can be written
without an asterisk, as y1i, and is not observed. Writing the model in reduced form (i.e., only variables on the right-hand side should be exogenous variables), we have the following equations: where Pi is the conditional probability of di = 1, and The model assumes that Uli and U2i are
bivariate normal random variables. Accordingly, the joint distribution of V1i, V2i, h(V1i,V2i), is a bivariate normal density fully characterized by the following assumptions: For the existence of the model, the analyst has to impose restrictions. A necessary and sufficient condition for the model
to be defined is that 123 = 0 = y231 + 32. Heckman called this condition the principal assumption. Under this assumption, the model becomes where 1111 # 0, 112 # 0, 121 # 0, and 1122 # 0. With the above specifications and assumptions, the model (4.5) can be estimated in two steps: 1.
First, estimate Equation 4.5b, which is analogous to solving the problem of a probit model. We estimate the conditional probabilities of the events di = 1 and di = 0 by treating y2i as a dummy variable. Doing so, 1121 and 1122 are estimated. Subject to the standard requirements for the
identification and existence of probit estimation, the analyst needs to normalize the equation 141 by and estimate 2. Second, estimate Equation 4.5a. Rewrite Equation 4.5a as the conditional expectation of y1i given di, X1i, and X2i: Using a result of biserial correlation is estimated: where
with and @ are the density and distribution function of a standard normal random variable, respectively; Because can now be estimated, a nd Equation 4.6 can be solved by the standard least squares method. Note that refers to a truncation of y whose truncated z exceeds a particular value
a (see Equation 4.1). Under this condition, Equation 4.7 Using estimated from Step 1, becomes is calculated using Now in the equation of are known, the only coefficient to be determined is thus, solving Equation 4.6 is a matter of estimating the following regression: Therefore, the
parameters can be estimated by using the standard OLS estimator. A few points are particularly worth noting. First, in Equation 4.5b, V2i is an error term or residual of the variation in the latent variable , after the variation is explained away by X1i and X2i. This is a specification error or, more
precisely, a case of unobserved heterogeneity determining selection bias. This specification error is treated as a true omitted variable problem and is creatively taken into consideration when estimating the parameters of Equation 4.5a. In other words, the impact of selection bias is neither
thrown away nor assumed to be random but is explicitly used and modeled in the equation estimating the outcome regression. This treatment for selection bias connotes Heckman’s contribution and distinguishes the econometric solution to the selection bias problem from that of the
statistical tradition. Important implications of this modeling feature were summarized by Heckman (1979, p. 155). In addition, there are different formulations for estimating the model 142 parameters that were developed after Heckman’s original model. For instance, Greene (1981, 2003)
constructed consistent estimators of the individual parameter p (i.e., the correlation of the two error terms) and oe (i.e., the variance of the error term of the regression equation). However, Heckman’s model has become standard in the literature. Last, the same sample selection model can
also be estimated by the maximum likelihood estimator (Greene, 1995), which yields results quite similar to those produced using the least squares estimator. Given that the maximum likelihood estimator requires more computing time, and computing speed was considerably slower then
than today, Heckman'’s least squares solution is a remarkable contribution. More important, Heckman’s solution was devised within a framework of structural equation modeling that is simple and succinct and that can be used in conjunction with the standard framework of OLS regression.
4.2 TREATMENT EFFECT MODEL Since the development of the sample selection model, statisticians and econometricians have formulated many new models and estimators. In mimicry of the Tobit or logit models, Greene (2003) suggested that these Heckman-type models might be
called “Heckit” models. One of the more important of these developments was the direct application of the sample selection model to the estimation of treatment effects in observational studies. The treatment effect model differs from the sample selection model—that is, in the form of
Equation 4.2—in two aspects: (1) a dummy variable indicating the treatment condition wi (i.e., wi = 1 if participant i is in the treatment condition, and wi = 0 otherwise) is directly entered into the regression equation and (2) the outcome variable yi of the regression equation is observed for
both wi = 1 and wi = 0. Specifically, the treatment effect model is expressed in two equations: and where €i and ui are bivariate normal with mean zero and covariance matrix Given incidental truncation (or sample selection) and that w is an endogenous dummy variable, the evaluation task is
to use the observed 143 variables to estimate the regression coefficients (3 while controlling for selection bias induced by nonignorable treatment assignment. Note that the model expressed by Equations 4.8a and 4.8b is a switching regression. By substituting wi in Equation 4.8a with
Equation 4.8b, we obtained two different equations of the outcome regression: and This is Quandt’'s (1958, 1972) form of the switching regression model that explicitly states that there are two regimes: treatment and nontreatment. Accordingly, there are separate models for the outcome
under each regime: For whereas for treated participants, the outcome model is nontreated participants, the outcome model is The treatment effect model illustrated earlier can be estimated in a two-step procedure similar to that described for the sample selection model. To increase the
efficiency of our exposition of models, we move on to the maximum likelihood estimator. Readers who are interested in the two-step estimator may consult Maddala (1983). Let f(g, u) be the joint density function of € and u defined by Equations 4.8a and 4.8b. According to Maddala (1983, p.
129), the joint density function of y and w is given by the following: and Thus, the log-likelihood functions for participant i (StataCorp, 2003) are as follows: For wi = 1, For wi = 0, 144 The treatment effect model has many applications in program evaluation. In particular, it is useful when
evaluators have data that were generated by a nonrandomized experiment and, thus, are faced with the challenge of nonignorable treatment assignment or selection bias. We illustrate the application of the treatment effect model in Section 4.4. 4.3 OVERVIEW OF THE STATA PROGRAMS
AND MAIN FEATURES OF TREATREG Most models described in this chapter can be estimated by the Stata and R packages. Many helpful user-developed programs are also available from the Internet. Within Stata, heckman can be used to estimate the sample selection model, and
treatreg can be used to estimate the treatment effect model. In Stata, heckman was developed to estimate the original Heckman model; that is, it is a model that focuses on incidentally truncated dependent variables. Using wage data collected from a population of employed women in which
homemakers were self-selected out, Heckman wanted to estimate determinants of the average wage of the entire female population. Two characteristics distinguish this kind of problem from the treatment effect model: The dependent variable is observed only for a subset of sample
participants (e.g., only observed for women in the paid labor force), and the group membership variable is not entered into the regression equation (see Equations 4.2a and 4.2b). Thus, the task fulfilled by heckman is different from the task most program evaluators or observational
researchers aim to fulfill. Typically, for study samples such as the group of women in the paid labor force, program evaluators or researchers will have observed outcomes for participants in both conditions. Therefore, the treatment membership variable is entered into the regression equation
to discern treatment effects. We emphasize these differences because it is treatreg, rather than heckman, that offers practical solutions to various types of evaluation problems. The treatreg program can be initiated using the following basic syntax: treatreg depvar [indepvars], treat(depvar_t
= indepvars_t) [twostep] where depvar is the outcome variable on which users want to assess the difference between treated and control groups, indepvars is a list of variables that users hypothesize would affect the outcome variable, depvar_t is the treatment membership variable that
denotes intervention condition, indepvars_t is the list of variables that users anticipate will determine the selection process, and twostep is an optional specification to request an estimation using a twostep consistent estimator. In other words, absence of twostep is the default; under the
default, Stata estimates the model using a full maximum likelihood. 145 Using notations from the treatment effect model (i.e., Equations 4.8a and 4.8b), depvar is y, indepvars are the vector x, and depvar_t is w in Equation 4.8a and indepvars_t are the vector z in Equation 4.8b. By design, x
and z can be the same variables if the user suspects that covariates of selection are also covariates of the outcome regression. Similarly, x and z can be different variables if the user suspects that covariates of selection are different from covariates of the outcome regression (i.e., x and z
are two different vectors). However, z is part of x, if the user suspects that additional covariates affect y but not w, or vice versa, if one suspects that additional covariates affect w but not y. The treatreg program supports Stata standard functions, such as the HuberWhite estimator of
variance under the robust and cluster( ) options, as well as incorporating sampling weights into analysis under the weight option. These functions are useful for researchers who analyze survey data with complex sampling designs using unequal sampling weights and multistaged
stratification. The weight option is available only for the maximum likelihood estimation and supports various types of weights, such as sampling weights (i.e., specify pwieghts = varname), frequency weights (i.e., specify fweights = varname), analytic weights (i.e., specify aweights =
varname), and importance weights (i.e., specify iweights = varname). When the robust and cluster( ) options are specified, Stata follows a convention that does not print model Wald chi-square, because that statistic is misleading in a sandwich (Huber-White) correction of standard errors.
Various results can be saved for postestimation analysis. You may use either predict to save statistics or variables of interest, or ereturn list to check scalars, macros, and matrices that are automatically saved. We now turn to an example (i.e., Section 4.4.1), and we will demonstrate the
syntax. We encourage readers to briefly review the study details of the example before moving on to the application of treatreg. To demonstrate the treatreg syntax and printed output, we use data from the National Survey of Child and Adolescent Well-Being (NSCAW). As explained in
Section 4.4.1, the NSCAW study focused on the well-being of children whose primary caregiver had received treatment for substance abuse problems. For our demonstration study, we use NSCAW data to compare the psychological outcomes of two groups of children: those whose
caregivers received substance abuse services (treatment variable aodserve = 1) and those whose caregivers did not (treatment variable aodserve = 0). Psychological outcomes were assessed using the Child Behavior Checklist—Externalizing (CBCLExternalizing) score (i.e., the outcome
variable external3). Variables entering into the selection equation (i.e., the z vector in Equation 4.8b) are cgragel, cgrage2, cgrage3, high, bahigh, employ, open, sexual, provide, supervis, other, cra47a, mental, arrest, pshl7a, cidi, and cgneed. Variables entering into the regression
equation (i.e., the x vector in Equation 4.8a) are black, hispanic, 146 natam, chdage2, chdage3, and ra. Table 4.1 exhibits the syntax and output. Important statistics printed by the output are expalained in the following. First, rho is the estimated p in the variance-covariance matrix, which is
the correlation between the error € i of the regression equation (4.8a) and the error ui of the selection equation (4.8b). In this example, = —.3603391, which is estimated by Stata through the inverse hyperbolic tangent of p (i.e., labeled as “/athrho” in the output). The statistic “athrho” is merely
a middle step through which Stata obtains estimated p. It is the estimated p (i.e., labeled as rho in the output) that serves an important function.1 The value of sigma is the estimated in the above variance-covariance matrix, which is the variance of the regression equation’s error term (i.e.,
variance of €i in Equation 4.8a). In this example, = 12.1655, which is estimated by Stata through In() (i.e., labeled as “/Insigma” in the output). As with “athrho,” “Insigma” is a middle-step statistic that is relatively unimportant to users. The statistic labeled “lambda” is the inverse Mills ratio, or
nonselection hazard, which is the product of two terms: Note that this is the statistic Heckman used in his two-step estimator (i.e., in Equation 4.7) to obtain a consistent estimation of the first-step equation. In the early days of discussing the Heckman or Heckit models, some researchers,
especially economists, assumed that A could be used to measure the level of selectivity effect, but this idea proved controversial and is no longer widely practiced. The estimated nonselection hazard (i.e., A) can also be saved as a new variable in the data set for further analysis, if the user
specifies hazard(newvarname) as a treatreg option. Table 4.2 illustrates this specification and prints out the saved hazard (variable h1) for the first 10 observations and the descriptive statistics. Second, because the treatment effect model assumes that the level of correlation between the
two error terms is nonzero, and because violation of that assumption can lead to estimation bias, it is often useful to test HO: p = 0. Stata prints results of a likelihood ratio test against “HO: p = 0” at the bottom of the output. This ratio test is a comparison of the joint likelihood of an
independent probit model for the selection equation and a regression model on the observed data against the treatment effect model likelihood. Given that x2 = 9.47 (p < .01) from Table 4.1, we can reject the null hypothesis at a statistically significant level and conclude that p is not equal to
0. This suggests that applying the treatment effect model is appropriate. Third, the reported model x2 = 58.97 (p < .0001) from Table 4.1 is a Wald test of all coefficients in the regression model (except constant) being zero. This is one method to gauge the goodness of fit of the model. With
p < .0001, the user can conclude that the covariates used in the regression model may be appropriate, and at least one of the covariates has an effect that is not equal to zero. 147 Fourth, interpreting regression coefficients for the regression equation (i.e., the top panel of the output of Table
4.1) is performed in the same fashion as that used for a regression model. The sign and magnitude of the regression coefficient indicate the net impact of an independent variable on the dependent variable: other things being equal, the amount of change observed on the outcome with each
one-unit increase in the independent variable. A one-tailed or two-tailed significance test on a coefficient of interest may be estimated using z and its associated p values. However, interpreting the regression coefficients of the selection equation is complicated because the observed w
variable takes only two values (0 vs. 1), and the estimation process uses the probability of w = 1. Nevertheless, the sign of the coefficient is always meaningful, and significance of the coefficient is important. For example, using the variable open (whether a child welfare case was open at
baseline: open = 1, yes; open = 0, no), because the coefficient is positive (i.e., coefficient of open = .5095), we know that the sample selection process (receipt or no receipt of services) is positively related to child welfare case status. That is, a caregiver with an open child welfare case was
more likely to receive substance abuse services, and this relationship is statistically significant. Thus, coefficients with p values less than .05 indicate variables that contribute to selection bias. In this example, we observe eight variables with p values of less than .05 (i.e., variables cgragel,
cgrage2, open, mental, arrest, psh17a, cidi, and cgneed). The significance of these variables indicates the presence of selection bias and underscores the importance of explicitly considering selection when modeling child outcomes. The eight variables are likely to be statistically significant
in a logistic regression using the logit of service receipt (i.e., the logit of aodserv) as a dependent variable and the same set of selection covariates as independent variables. Table 4.1 Exhibit of Stata treatreg Output for the NSCAW Study 148 Source: Data from NSCAW, 2004. Table 4.2
Exhibit of Stata treatreg Output: Syntax to Save Nonselection Hazard 149 Fifth, the estimated treatment effect is an indicator of program impact net of observed selection bias; this statistic is shown by the coefficient associated with the treatment membership variable (i.e., aodserv in the
current example) in the regression equation. As shown in Table 4.1, this coefficient is 8.601002, and the associated p value is .001, meaning that other things being equal, children whose caregivers received substance abuse services had a mean score that was 8.6 units greater than
children whose caregivers did not receive such services. The difference is statistically significant at a .001 level. As previously mentioned, Stata automatically saves scalars, macros, and matrices for postestimation analysis. Table 4.3 shows the saved statistics for the demonstration model
(Table 4.1). Automatically saved statistics can be recalled using the command “ereturn list.” 4.4 EXAMPLES This section describes three applications of the Heckit treatment effect model in social behavioral research. The first example comes from the NSCAW study, and, as in the treatreg
syntax illustration, it estimates the impact on child wellbeing of the participation of children’s caregivers in substance abuse treatment services. This study is typical of those that use a large, nationally representative survey to obtain observational data (i.e., data generated through a
nonexperimental process). It is not uncommon in such studies to use a covariance control approach in an attempt to estimate the impact of program 150 participation. Our second example comes from a program evaluation that originally included a group randomization design. However, the
randomization failed, and researchers were left with a group-design experiment in which treatment assignment was not ignorable. The example demonstrates the use of the Heckit treatment effect model to correct for selection bias while estimating treatment effectiveness. The third example
illustrates how to run the treatment effect model after multiple imputations of missing data. 4.4.1 Application of the Treatment Effect Model to Analysis of Observational Data Child maltreatment and parental substance abuse are highly correlated (e.qg., English et al., 1998; U.S. Department of
Health and Human Services [DHHS], 1999). A caregiver’s abuse of substances may lead to maltreatment through many different mechanisms. For example, parents may prioritize their drug use more highly than caring for their children, and substance abuse can lead to extreme poverty and
to incarceration, both of which often leave children with unmet basic needs (Magura & Laudet, 1996). Policy makers have long been concerned about the safety of the children of substance-abusing parents. Described briefly earlier, the NSCAW study was designed to address a range of
guestions about the outcomes of children who are involved in child welfare systems across the country (NSCAW Research Group, 2002). NSCAW is a nationally representative sample of 5,501 children, ages 0 to 14 years at intake, who were investigated by child welfare services following a
report of child maltreatment (e.g., child abuse or neglect) between October 1999 and December 2000 (i.e., a multiwave data collection corresponding to the data employed by this example). The NSCAW sample was selected using a twostage stratified sampling design (NSCAW Research
Group, 2002). The data were collected through interviews conducted with children, primary caregivers, teachers, and child welfare workers. These data contain detailed information on child development, social and psychological adjustment, mental health and other symptoms, service
participation, environmental conditions, and protective services placements (e.g., placement in foster care or a group home). NSCAW gathered data over multiple waves, and the sample represented children investigated as victims of child abuse or neglect in 92 primary sampling units,
principally counties, in 36 states. Table 4.3 Exhibit of Stata treatreg Output: Syntax to Check Saved Statistics 151 Source: Data from NSCAW, 2004. The analysis for this example uses the NSCAW Wave 2 data, or the data from the 18-month follow-up survey. Therefore, the analysis
employs one-time-point data that were collected 18 months after the baseline. For the purposes of our demonstration, the study sample was limited to 1,407 children who lived at home (i.e., not in foster care), whose primary caregiver was female, and who were 4 years of age or older at
baseline. We limited the study sample to children with female caregivers because females composed the vast majority (90%) of primary caregivers in NSCAW. In addition, because NSCAW is a large observational database and our research questions focus on the impact of caregivers’
receipt of substance abuse services on children’s well-being, it is important to model the process of treatment assignment directly; therefore, the heterogeneity of potential causal effects is taken into consideration. In the 152 NSCAW survey, substance abuse treatment was defined using six
variables that asked the caregiver or child welfare worker whether the caregiver had received treatment for an alcohol or drug problem at the time of the baseline interview or at any time in the following 18 months. Our analysis of NSCAW data was guided by two questions: (1) After 18
months of involvement with child welfare services, how were children of caregivers who received substance abuse services faring? and (2) Did children of caregivers who received substance abuse services have more severe behavioral problems than did their counterparts whose caregivers
did not receive such services? As described previously, the choice of covariates hypothesized to affect sample selection serves an essential role in the analysis. We chose these variables based on our review of the substance abuse literature through which we determined the characteristics
that were often associated with substance abuse treatment receipt. Because no studies focused exclusively on female caregivers involved with child welfare services, we had to rely on literature regarding substance abuse in the general population (e.g., Knight, Logan, & Simpson, 2001;
McMahon, Winkel, Suchman, & Luthar, 2002; Weisner, Jennifer, Tam, & Moore, 2001). We found four categories of characteristics: (1) social demographic characteristics (e.g., caregiver’'s age, less than 35 years, 35 to 44 years, 45 to 54 years, and above 54 years; caregiver’s education,
less than high school degree, high school degree, and bachelor’'s degree or higher; caregiver's employment status, employed/not employed; and whether the caregiver had “trouble paying for basic necessities,” which was answered —yes/no); (2) risks (e.g., caregiver mental health
problems—yes/no; child welfare case status—closed/open; caregiver history of arrest—yes/no; and the type of child maltreatment—physical abuse, sexual abuse, failure to provide, failure to supervise, and other); (3) caregiver’s prior receipt of substance abuse treatment (i.e., caregiver
alcohol or other drug treatment—yes/no); and (4) caregiver’s need for alcohol and drug treatment services (i.e., measured on the World Health Organization’s Composite International Diagnostic Interview— Short Form [CIDI-SF] that reports the presence/absence of the need for services and
caregiver’s self-report of service need—yes/no). The outcome variable is the Achenbach Children’s Behavioral Checklist (CBCL/4-18) that is completed by the caregivers. This scale includes scores for externalizing and internalizing behaviors (Achenbach, 1991). A high score on each of
these measures indicates a greater extent of behavioral problems. When we conducted the outcome regression, we controlled for the following covariates: child’s race/ethnicity (Black/non-Hispanic, White/non-Hispanic, Hispanic, and Native American), child’s age (4-5 years, 6—10 years,
and 11 years and older), and risk assessment by child welfare worker at the baseline (risk absence/risk presence). Table 4.4 presents descriptive statistics of the study sample. Of 1,407 153 children, 112 (8% of the sample) had a caregiver who had received substance abuse services, and
1,295 (92% of the sample) had caregivers who had not received services. Of 11 study variables, 8 showed statistically significant differences (p < .01) between treated cases (i.e., children whose caregivers had received services) and nontreated cases (i.e., children whose caregivers had
not received services). For instance, the following caregivers were more likely to have received treatment services: those with a racial/ethnic minority status; with a positive risk to children; who were currently unemployed; with a current, open child welfare case; those who were investigated
for child maltreatment types of failure to provide or failure to supervise; those who had trouble paying for basic necessities; with a history of mental health problems; those with a history of arrest; those with prior receipt of substance abuse treatment; CIDI-SF positive; and those who self-
reported needing services. Without controlling for these selection effects, the estimates of differences on child outcomes would clearly be biased. Table 4.5 presents the estimated differences in psychological outcomes between groups before and after adjustments for sample selection.
Taking the externalizing score as an example, the data show that the mean externalizing score for the treatment group at the Wave 2 data collection (Month 18) was 57.96, and the mean score for the nontreatment group at the Wave 2 was 56.92. The unadjusted mean difference between
groups was 1.04, meaning that the externalizing score for the treatment group was 1.04 units greater (or worse) than that for the nontreatment group. Using an OLS regression to adjust for covariates (i.e., including all variables used in the treatment effect model, i.e., independent variables
used in both the selection equation and the regression equation), the adjusted mean difference is —0.08 units; in other words, the treatment group is 0.08 units lower (or better) than the nontreatment group, and the difference is not statistically significant. These data suggest that the
involvement of caregivers in substance abuse treatment has a negligible effect on child behavior. Alternatively, one might conclude that children whose parents are involved in treatment services do not differ from children whose parents are not referred to treatment. Given the high risk of
children whose parents abuse substances, some might claim drug treatment to be successful. Now, however, consider a different analytic approach. The treatment effect model adjusts for heterogeneity of service participation by taking into consideration covariates affecting selection bias.
The results show that at the follow-up data collection (Month 18), the treatment group was 8.6 units higher (or worse) than the nontreatment group (p < .001). This suggests that both the unadjusted mean difference (found by independent t test) and the adjusted mean difference (found
above by regression) are biased because we did not control appropriately for selection bias. A similar pattern is observed for the internalizing score. The findings suggest that negative program impacts may be masked in simple mean differences and even in regression adjustment. 154
Table 4.4 Sample Description for the Study Evaluating the Impacts of Caregiver’'s Receipt of Substance Abuse Services on Child Developmental Well-Being 155 Source: Data from NSCAW, 2004. Notes: Reference group is shown next to the variable name. Variable name in parentheses is
the actual name used in the programming syntax. AOD = alcohol or drug; CIDI-SF = Composite International Diagnostic Interview—Short Form. 156 Table 4.5 Differences in Psychological Outcomes Before and After Adjustments of Sample Selection Source: Data from NSCAW, 2004. a.
Independent t tests on mean differences or t tests on regression coefficients show that none of these mean differences are statistically significant. **p < .01, ***p < .001, two-tailed test. 4.4.2 Evaluation of Treatment Effects From a Program With a Group Randomization Design The Social
and Character Development (SACD) program was jointly sponsored by the U.S. Department of Education and the Centers for Disease Control and Prevention. The SACD intervention project was designed to assess the impact of schoolwide social and character development education in
elementary schools. Seven proposals to implement SACD were chosen through a peer review process, and each of the seven research teams implemented different SACD programs in elementary schools across the country. At each of the seven sites, schools were randomly assigned to
receive either an intervention program or a control curriculum, and one cohort of students was followed from third grade (beginning in fall 2004) through fifth grade (ending in spring 2007). A total of 84 elementary schools were randomized to intervention and control at seven sites: lllinois
(Chicago), New Jersey, New York (Buffalo, New York City, and Rochester), North Carolina, and Tennessee. Using site-specific data (as opposed to data collected across all seven sites), this example reports findings from an evaluation of the SACD program implemented in North Carolina
(NC). The NC intervention was also known as the Competency Support Program, which included a skills-training curriculum, Making Choices, designed for elementary school students. The primary goal of the Making Choices curriculum was to increase students’ social competence and
reduce their aggressive behavior. During their third-grade year, the treatment group received 29 Making Choices classroom lessons and 8 follow157 up classroom lessons in each of the fourth and fifth grades. In addition, special in-service training for classroom teachers in intervention
schools focused on the risks of peer rejection and social isolation, including poor academic outcomes and conduct problems. Throughout the school year, teachers received consultation and support (two times per month) in providing the Making Choices lessons designed to enhance
children’s social information-processing skills. In addition, teachers could request consultation on classroom behavior management and social dynamics. The investigators designed the Competency Support Program evaluation as a group randomization trial. The total number of schools
participating in the study within a school district was determined in advance, and then schools were randomly assigned to treatment conditions within school districts; for each treated school, a school that best matched the treated school on academic yearly progress, percentage of minority
students, and percentage of students receiving free or reduced-price lunch was selected as a control school (i.e., data collection only without receiving intervention). Over a 2-year period, this group randomization procedure resulted in a total of 14 schools (Cohort 1, 10 schools; Cohort 2, 4
schools) for the study: Seven received the Competency Support Program intervention, and seven received routine curricula. In this example, we focus on the 10 schools in Cohort 1. As it turned out—and as is often the case when implementing randomized experiments in social behavioral
sciences—the group randomization did not work as planned. In some school districts, as few as four schools met the study criteria and were eligible for participation. When comparing data from the 10 schools, the investigators found that the intervention schools differed from the control
schools in significant ways: The intervention schools had lower academic achievement scores on statewide tests (Adequate Yearly Progress [AYP]), a higher percentage of students of color, a higher percentage of students receiving free or reduced-price lunches, and lower mean scores on
behavioral composite scales at baseline. These differences were statistically significant at the .05 level using bivariate tests and logistic regression models. The researchers were confronted with the failure of randomization. Had these selection effects not been taken into consideration, the
evaluation of the program effectiveness would be biased. The evaluation used several composite scales that proved to have good psychometric properties. Scales from two well-established instruments were used for the evaluation: (1) the Carolina Child Checklist (CCC) and (2) the
Interpersonal Competence Scale—Teacher (ICST). The CCC is a 35-item teacher questionnaire that yields factor scores on children’s behavior, including social contact (a = .90), cognitive concentration (a = .97), social competence (a = .90), and social aggression (a = .91). The ICST is also
a teacher questionnaire. It uses 18 items that yield factor scores on children’s behavior, including aggression (a = .84), academic competence (a =.74), social 158 competence (a = .75), internalizing behavior (a = .76), and popularity (a = .78). Table 4.6 presents information on the sample
and results of the Heckit treatment effect model used to assess change scores in the fifth grade. The two outcome measures used in the treatment effect models included the ICST Social Competence Score and the CCC Prosocial Behavior Score, which is a subscale of CCC Social
Competence. On both these measures, high scores indicate desirable behavior. The dependent variable employed in the treatment effect model was a change score—that is, a difference of an outcome variable (i.e., ICST Social Competence or CCC Prosocial Behavior) at the end of the
spring semester of the fifth grade minus the score at the beginning of the fall semester of the fifth grade. Although “enterers” (students who transfer in) are included in the sample and did not have full exposure, most students in the intervention condition received Making Choices lessons
during the third, fourth, and fifth grades. Thus, if the intervention was effective, then we would expect to observe a higher change (i.e., greater increase on the measured behavior) for the treated students than the control group students. Before evaluating the treatment effects revealed by
the models, we need to highlight an important methodological issue demonstrated by this example: the control of clustering effects using the Huber-White sandwich estimator of variance. As noted earlier, the Competency Support Program implemented in North Carolina used a group
randomization design. As such, students were nested within schools, and students within the same school tended to exhibit similar behavior on outcomes. When analyzing this type of nested data, the analyst can use the option of robust cluster () in treatreg to obtain an estimation of robust
standard error for each coefficient. The Huber-White estimator only corrects standard errors and does not change the estimation of regression coefficients. Thus, in Table 4.6, we present one column for the “Coefficient,” along with two columns of estimated stan<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>