
	

Continue

https://feedproxy.google.com/~r/Uplcv/~3/cv9VXjIrmdE/uplcv?utm_term=command+line+manual+pdf


Command	line	manual	pdf

To	publish	a	project	from	the	command	you	just	need	to	add	an	additional	command	known	as	a	"switch"	to	specify	the	output	format	you	want	to	use.	The	following	example	compiles	the	project	to	an	HTML	Help	CHM	file,	using	the	last	output	location	and	file	name	you	used	when	you	published	manually.	See	the	Syntax	reference	for	details	of	the
available	output	format	switches.	HELPMAN.EXE	"F:\My	Projects\projectfile.hmxz"	/CHM	The	output	format	switch	must	always	be	the	first	switch	after	the	project	file	name.	All	the	other	switches	can	come	in	any	order	but	they	must	be	after	the	output	format	switch.	The	only	exception	here	is	the	/TSK	switch	for	publishing	predefined	publishing
tasks,	which	can	be	used	on	its	own	without	any	other	switches.	See	Output	to	multiple	formats	for	details.	Note	the	use	of	quotes!	All	paths	and	file	names	that	contain	spaces	must	be	enclosed	in	quotes.	curl	/	Docs	/	Tool	Documentation	/	Man	Page	NAME	curl	-	transfer	a	URL	SYNOPSIS	curl	[options	/	URLs]	DESCRIPTION	curl	is	a	tool	to	transfer
data	from	or	to	a	server,	using	one	of	the	supported	protocols	(DICT,	FILE,	FTP,	FTPS,	GOPHER,	HTTP,	HTTPS,	IMAP,	IMAPS,	LDAP,	LDAPS,	MQTT,	POP3,	POP3S,	RTMP,	RTMPS,	RTSP,	SCP,	SFTP,	SMB,	SMBS,	SMTP,	SMTPS,	TELNET	or	TFTP).	The	command	is	designed	to	work	without	user	interaction.	curl	offers	a	busload	of	useful	tricks	like
proxy	support,	user	authentication,	FTP	upload,	HTTP	post,	SSL	connections,	cookies,	file	transfer	resume	and	more.	As	you	will	see	below,	the	number	of	features	will	make	your	head	spin!	curl	is	powered	by	libcurl	for	all	transfer-related	features.	See	libcurl(3)	for	details.	URL	The	URL	syntax	is	protocol-dependent.	You'll	find	a	detailed	description
in	RFC	3986.	You	can	specify	multiple	URLs	or	parts	of	URLs	by	writing	part	sets	within	braces	and	quoting	the	URL	as	in:			"	.{one,two,three}.com"	or	you	can	get	sequences	of	alphanumeric	series	by	using	[]	as	in:			"ftp://ftp.example.com/file[1-100].txt"			"ftp://ftp.example.com/file[001-100].txt"	(with	leading	zeros)			"ftp://ftp.example.com/file[a-
z].txt"	Nested	sequences	are	not	supported,	but	you	can	use	several	ones	next	to	each	other:			"	1996-1999]/vol[1-4]/part{a,b,c}.html"	You	can	specify	any	amount	of	URLs	on	the	command	line.	They	will	be	fetched	in	a	sequential	manner	in	the	specified	order.	You	can	specify	command	line	options	and	URLs	mixed	and	in	any	order	on	the	command
line.	You	can	specify	a	step	counter	for	the	ranges	to	get	every	Nth	number	or	letter:			"	1-100:10].txt"			"	a-z:2].txt"	When	using	[]	or	{}	sequences	when	invoked	from	a	command	line	prompt,	you	probably	have	to	put	the	full	URL	within	double	quotes	to	avoid	the	shell	from	interfering	with	it.	This	also	goes	for	other	characters	treated	special,	like	for
example	'&',	'?'	and	'*'.	Provide	the	IPv6	zone	index	in	the	URL	with	an	escaped	percentage	sign	and	the	interface	name.	Like	in			"http://[fe80::3%25eth0]/"	If	you	specify	URL	without	protocol://	prefix,	curl	will	attempt	to	guess	what	protocol	you	might	want.	It	will	then	default	to	HTTP	but	try	other	protocols	based	on	often-used	host	name	prefixes.
For	example,	for	host	names	starting	with	"ftp."	curl	will	assume	you	want	to	speak	FTP.	curl	will	do	its	best	to	use	what	you	pass	to	it	as	a	URL.	It	is	not	trying	to	validate	it	as	a	syntactically	correct	URL	by	any	means	but	is	instead	very	liberal	with	what	it	accepts.	curl	will	attempt	to	re-use	connections	for	multiple	file	transfers,	so	that	getting	many
files	from	the	same	server	will	not	do	multiple	connects	/	handshakes.	This	improves	speed.	Of	course	this	is	only	done	on	files	specified	on	a	single	command	line	and	cannot	be	used	between	separate	curl	invocations.	OUTPUT	If	not	told	otherwise,	curl	writes	the	received	data	to	stdout.	It	can	be	instructed	to	instead	save	that	data	into	a	local	file,
using	the	-o,	--output	or	-O,	--remote-name	options.	If	curl	is	given	multiple	URLs	to	transfer	on	the	command	line,	it	similarly	needs	multiple	options	for	where	to	save	them.	curl	does	not	parse	or	otherwise	"understand"	the	content	it	gets	or	writes	as	output.	It	does	no	encoding	or	decoding,	unless	explicitly	asked	to	with	dedicated	command	line
options.	PROTOCOLS	curl	supports	numerous	protocols,	or	put	in	URL	terms:	schemes.	Your	particular	build	may	not	support	them	all.	DICT	Lets	you	lookup	words	using	online	dictionaries.	FILE	Read	or	write	local	files.	curl	does	not	support	accessing	file://	URL	remotely,	but	when	running	on	Microsoft	Windows	using	the	native	UNC	approach	will
work.	FTP(S)	curl	supports	the	File	Transfer	Protocol	with	a	lot	of	tweaks	and	levers.	With	or	without	using	TLS.	GOPHER	Retrieve	files.	HTTP(S)	curl	supports	HTTP	with	numerous	options	and	variations.	It	can	speak	HTTP	version	0.9,	1.0,	1.1,	2	and	3	depending	on	build	options	and	the	correct	command	line	options.	IMAP(S)	Using	the	mail	reading
protocol,	curl	can	"download"	emails	for	you.	With	or	without	using	TLS.	LDAP(S)	curl	can	do	directory	lookups	for	you,	with	or	without	TLS.	MQTT	curl	supports	MQTT	version	3.	Downloading	over	MQTT	equals	"subscribe"	to	a	topic	while	uploading/posting	equals	"publish"	on	a	topic.	MQTT	support	is	experimental	and	TLS	based	MQTT	is	not
supported	(yet).	POP3(S)	Downloading	from	a	pop3	server	means	getting	a	mail.	With	or	without	using	TLS.	RTMP(S)	The	Realtime	Messaging	Protocol	is	primarily	used	to	server	streaming	media	and	curl	can	download	it.	RTSP	curl	supports	RTSP	1.0	downloads.	SCP	curl	supports	SSH	version	2	scp	transfers.	SFTP	curl	supports	SFTP	(draft	5)	done
over	SSH	version	2.	SMB(S)	curl	supports	SMB	version	1	for	upload	and	download.	SMTP(S)	Uploading	contents	to	an	SMTP	server	means	sending	an	email.	With	or	without	TLS.	TELNET	Telling	curl	to	fetch	a	telnet	URL	starts	an	interactive	session	where	it	sends	what	it	reads	on	stdin	and	outputs	what	the	server	sends	it.	TFTP	curl	can	do	TFTP
downloads	and	uploads.	PROGRESS	METER	curl	normally	displays	a	progress	meter	during	operations,	indicating	the	amount	of	transferred	data,	transfer	speeds	and	estimated	time	left,	etc.	The	progress	meter	displays	number	of	bytes	and	the	speeds	are	in	bytes	per	second.	The	suffixes	(k,	M,	G,	T,	P)	are	1024	based.	For	example	1k	is	1024	bytes.
1M	is	1048576	bytes.	curl	displays	this	data	to	the	terminal	by	default,	so	if	you	invoke	curl	to	do	an	operation	and	it	is	about	to	write	data	to	the	terminal,	it	disables	the	progress	meter	as	otherwise	it	would	mess	up	the	output	mixing	progress	meter	and	response	data.	If	you	want	a	progress	meter	for	HTTP	POST	or	PUT	requests,	you	need	to
redirect	the	response	output	to	a	file,	using	shell	redirect	(>),	-o,	--output	or	similar.	This	does	not	apply	to	FTP	upload	as	that	operation	does	not	spit	out	any	response	data	to	the	terminal.	If	you	prefer	a	progress	"bar"	instead	of	the	regular	meter,	-#,	--progress-bar	is	your	friend.	You	can	also	disable	the	progress	meter	completely	with	the	-s,	--silent
option.	OPTIONS	Options	start	with	one	or	two	dashes.	Many	of	the	options	require	an	additional	value	next	to	them.	The	short	"single-dash"	form	of	the	options,	-d	for	example,	may	be	used	with	or	without	a	space	between	it	and	its	value,	although	a	space	is	a	recommended	separator.	The	long	"double-dash"	form,	-d,	--data	for	example,	requires	a
space	between	it	and	its	value.	Short	version	options	that	don't	need	any	additional	values	can	be	used	immediately	next	to	each	other,	like	for	example	you	can	specify	all	the	options	-O,	-L	and	-v	at	once	as	-OLv.	In	general,	all	boolean	options	are	enabled	with	--option	and	yet	again	disabled	with	--no-option.	That	is,	you	use	the	exact	same	option
name	but	prefix	it	with	"no-".	However,	in	this	list	we	mostly	only	list	and	show	the	--option	version	of	them.	(This	concept	with	--no	options	was	added	in	7.19.0.	Previously	most	options	were	toggled	on/off	through	repeated	use	of	the	same	command	line	option.)	--abstract-unix-socket	(HTTP)	Connect	through	an	abstract	Unix	domain	socket,	instead
of	using	the	network.	Note:	netstat	shows	the	path	of	an	abstract	socket	prefixed	with	'@',	however	the	argument	should	not	have	this	leading	character.	Added	in	7.53.0.	--alt-svc	(HTTPS)	WARNING:	this	option	is	experimental.	Do	not	use	in	production.	This	option	enables	the	alt-svc	parser	in	curl.	If	the	file	name	points	to	an	existing	alt-svc	cache
file,	that	will	be	used.	After	a	completed	transfer,	the	cache	will	be	saved	to	the	file	name	again	if	it	has	been	modified.	Specify	a	""	file	name	(zero	length)	to	avoid	loading/saving	and	make	curl	just	handle	the	cache	in	memory.	If	this	option	is	used	several	times,	curl	will	load	contents	from	all	the	files	but	the	last	one	will	be	used	for	saving.	Added	in
7.64.1.	--anyauth	(HTTP)	Tells	curl	to	figure	out	authentication	method	by	itself,	and	use	the	most	secure	one	the	remote	site	claims	to	support.	This	is	done	by	first	doing	a	request	and	checking	the	response-headers,	thus	possibly	inducing	an	extra	network	round-trip.	This	is	used	instead	of	setting	a	specific	authentication	method,	which	you	can	do
with	--basic,	--digest,	--ntlm,	and	--negotiate.	Using	--anyauth	is	not	recommended	if	you	do	uploads	from	stdin,	since	it	may	require	data	to	be	sent	twice	and	then	the	client	must	be	able	to	rewind.	If	the	need	should	arise	when	uploading	from	stdin,	the	upload	operation	will	fail.	Used	together	with	-u,	--user.	See	also	--proxy-anyauth,	--basic	and	--
digest.	-a,	--append	(FTP	SFTP)	When	used	in	an	upload,	this	makes	curl	append	to	the	target	file	instead	of	overwriting	it.	If	the	remote	file	doesn't	exist,	it	will	be	created.	Note	that	this	flag	is	ignored	by	some	SFTP	servers	(including	OpenSSH).	--aws-sigv4	Use	AWS	V4	signature	authentication	in	the	transfer.	The	provider	argument	is	a	string	that
is	used	by	the	algorithm	when	creating	outgoing	authentication	headers.	The	region	argument	is	a	string	that	points	to	a	geographic	area	of	a	resources	collection	(region-code)	when	the	region	name	is	omitted	from	the	endpoint.	The	service	argument	is	a	string	that	points	to	a	function	provided	by	a	cloud	(service-code)	when	the	service	name	is
omitted	from	the	endpoint.	Added	in	7.75.0.	--basic	(HTTP)	Tells	curl	to	use	HTTP	Basic	authentication	with	the	remote	host.	This	is	the	default	and	this	option	is	usually	pointless,	unless	you	use	it	to	override	a	previously	set	option	that	sets	a	different	authentication	method	(such	as	--ntlm,	--digest,	or	--negotiate).	Used	together	with	-u,	--user.	See
also	--proxy-basic.	--cacert	(TLS)	Tells	curl	to	use	the	specified	certificate	file	to	verify	the	peer.	The	file	may	contain	multiple	CA	certificates.	The	certificate(s)	must	be	in	PEM	format.	Normally	curl	is	built	to	use	a	default	file	for	this,	so	this	option	is	typically	used	to	alter	that	default	file.	curl	recognizes	the	environment	variable	named
'CURL_CA_BUNDLE'	if	it	is	set,	and	uses	the	given	path	as	a	path	to	a	CA	cert	bundle.	This	option	overrides	that	variable.	The	windows	version	of	curl	will	automatically	look	for	a	CA	certs	file	named	´curl-ca-bundle.crt´,	either	in	the	same	directory	as	curl.exe,	or	in	the	Current	Working	Directory,	or	in	any	folder	along	your	PATH.	If	curl	is	built
against	the	NSS	SSL	library,	the	NSS	PEM	PKCS#11	module	(libnsspem.so)	needs	to	be	available	for	this	option	to	work	properly.	(iOS	and	macOS	only)	If	curl	is	built	against	Secure	Transport,	then	this	option	is	supported	for	backward	compatibility	with	other	SSL	engines,	but	it	should	not	be	set.	If	the	option	is	not	set,	then	curl	will	use	the
certificates	in	the	system	and	user	Keychain	to	verify	the	peer,	which	is	the	preferred	method	of	verifying	the	peer's	certificate	chain.	(Schannel	only)	This	option	is	supported	for	Schannel	in	Windows	7	or	later	with	libcurl	7.60	or	later.	This	option	is	supported	for	backward	compatibility	with	other	SSL	engines;	instead	it	is	recommended	to	use
Windows'	store	of	root	certificates	(the	default	for	Schannel).	If	this	option	is	used	several	times,	the	last	one	will	be	used.	--capath	(TLS)	Tells	curl	to	use	the	specified	certificate	directory	to	verify	the	peer.	Multiple	paths	can	be	provided	by	separating	them	with	":"	(e.g.	"path1:path2:path3").	The	certificates	must	be	in	PEM	format,	and	if	curl	is	built
against	OpenSSL,	the	directory	must	have	been	processed	using	the	c_rehash	utility	supplied	with	OpenSSL.	Using	--capath	can	allow	OpenSSL-powered	curl	to	make	SSL-connections	much	more	efficiently	than	using	--cacert	if	the	--cacert	file	contains	many	CA	certificates.	If	this	option	is	set,	the	default	capath	value	will	be	ignored,	and	if	it	is	used
several	times,	the	last	one	will	be	used.	--cert-status	(TLS)	Tells	curl	to	verify	the	status	of	the	server	certificate	by	using	the	Certificate	Status	Request	(aka.	OCSP	stapling)	TLS	extension.	If	this	option	is	enabled	and	the	server	sends	an	invalid	(e.g.	expired)	response,	if	the	response	suggests	that	the	server	certificate	has	been	revoked,	or	no
response	at	all	is	received,	the	verification	fails.	This	is	currently	only	implemented	in	the	OpenSSL,	GnuTLS	and	NSS	backends.	Added	in	7.41.0.	--cert-type	(TLS)	Tells	curl	what	type	the	provided	client	certificate	is	using.	PEM,	DER,	ENG	and	P12	are	recognized	types.	If	not	specified,	PEM	is	assumed.	If	this	option	is	used	several	times,	the	last	one
will	be	used.	See	also	-E,	--cert,	--key	and	--key-type.	-E,	--cert	(TLS)	Tells	curl	to	use	the	specified	client	certificate	file	when	getting	a	file	with	HTTPS,	FTPS	or	another	SSL-based	protocol.	The	certificate	must	be	in	PKCS#12	format	if	using	Secure	Transport,	or	PEM	format	if	using	any	other	engine.	If	the	optional	password	isn't	specified,	it	will	be
queried	for	on	the	terminal.	Note	that	this	option	assumes	a	"certificate"	file	that	is	the	private	key	and	the	client	certificate	concatenated!	See	-E,	--cert	and	--key	to	specify	them	independently.	If	curl	is	built	against	the	NSS	SSL	library	then	this	option	can	tell	curl	the	nickname	of	the	certificate	to	use	within	the	NSS	database	defined	by	the
environment	variable	SSL_DIR	(or	by	default	/etc/pki/nssdb).	If	the	NSS	PEM	PKCS#11	module	(libnsspem.so)	is	available	then	PEM	files	may	be	loaded.	If	you	want	to	use	a	file	from	the	current	directory,	please	precede	it	with	"./"	prefix,	in	order	to	avoid	confusion	with	a	nickname.	If	the	nickname	contains	":",	it	needs	to	be	preceded	by	"\"	so	that	it
is	not	recognized	as	password	delimiter.	If	the	nickname	contains	"\",	it	needs	to	be	escaped	as	"\\"	so	that	it	is	not	recognized	as	an	escape	character.	If	curl	is	built	against	OpenSSL	library,	and	the	engine	pkcs11	is	available,	then	a	PKCS#11	URI	(RFC	7512)	can	be	used	to	specify	a	certificate	located	in	a	PKCS#11	device.	A	string	beginning	with
"pkcs11:"	will	be	interpreted	as	a	PKCS#11	URI.	If	a	PKCS#11	URI	is	provided,	then	the	--engine	option	will	be	set	as	"pkcs11"	if	none	was	provided	and	the	--cert-type	option	will	be	set	as	"ENG"	if	none	was	provided.	(iOS	and	macOS	only)	If	curl	is	built	against	Secure	Transport,	then	the	certificate	string	can	either	be	the	name	of	a
certificate/private	key	in	the	system	or	user	keychain,	or	the	path	to	a	PKCS#12-encoded	certificate	and	private	key.	If	you	want	to	use	a	file	from	the	current	directory,	please	precede	it	with	"./"	prefix,	in	order	to	avoid	confusion	with	a	nickname.	(Schannel	only)	Client	certificates	must	be	specified	by	a	path	expression	to	a	certificate	store.	(Loading
PFX	is	not	supported;	you	can	import	it	to	a	store	first).	You	can	use	"\\"	to	refer	to	a	certificate	in	the	system	certificates	store,	for	example,	"CurrentUser\MY\934a7ac6f8a5d579285a74fa61e19f23ddfe8d7a".	Thumbprint	is	usually	a	SHA-1	hex	string	which	you	can	see	in	certificate	details.	Following	store	locations	are	supported:	CurrentUser,
LocalMachine,	CurrentService,	Services,	CurrentUserGroupPolicy,	LocalMachineGroupPolicy,	LocalMachineEnterprise.	If	this	option	is	used	several	times,	the	last	one	will	be	used.	See	also	--cert-type,	--key	and	--key-type.	--ciphers	(TLS)	Specifies	which	ciphers	to	use	in	the	connection.	The	list	of	ciphers	must	specify	valid	ciphers.	Read	up	on	SSL
cipher	list	details	on	this	URL:			If	this	option	is	used	several	times,	the	last	one	will	be	used.	--compressed-ssh	(SCP	SFTP)	Enables	built-in	SSH	compression.	This	is	a	request,	not	an	order;	the	server	may	or	may	not	do	it.	Added	in	7.56.0.	--compressed	(HTTP)	Request	a	compressed	response	using	one	of	the	algorithms	curl	supports,	and
automatically	decompress	the	content.	Headers	are	not	modified.	If	this	option	is	used	and	the	server	sends	an	unsupported	encoding,	curl	will	report	an	error.	This	is	a	request,	not	an	order;	the	server	may	or	may	not	deliver	data	compressed.	-K,	--config	Specify	a	text	file	to	read	curl	arguments	from.	The	command	line	arguments	found	in	the	text
file	will	be	used	as	if	they	were	provided	on	the	command	line.	Options	and	their	parameters	must	be	specified	on	the	same	line	in	the	file,	separated	by	whitespace,	colon,	or	the	equals	sign.	Long	option	names	can	optionally	be	given	in	the	config	file	without	the	initial	double	dashes	and	if	so,	the	colon	or	equals	characters	can	be	used	as	separators.
If	the	option	is	specified	with	one	or	two	dashes,	there	can	be	no	colon	or	equals	character	between	the	option	and	its	parameter.	If	the	parameter	contains	whitespace	(or	starts	with	:	or	=),	the	parameter	must	be	enclosed	within	quotes.	Within	double	quotes,	the	following	escape	sequences	are	available:	\\,	\",	\t,	,	\r	and	\v.	A	backslash	preceding	any
other	letter	is	ignored.	If	the	first	column	of	a	config	line	is	a	'#'	character,	the	rest	of	the	line	will	be	treated	as	a	comment.	Only	write	one	option	per	physical	line	in	the	config	file.	Specify	the	filename	to	-K,	--config	as	'-'	to	make	curl	read	the	file	from	stdin.	Note	that	to	be	able	to	specify	a	URL	in	the	config	file,	you	need	to	specify	it	using	the	--url
option,	and	not	by	simply	writing	the	URL	on	its	own	line.	So,	it	could	look	similar	to	this:	url	=	"	When	curl	is	invoked,	it	(unless	-q,	--disable	is	used)	checks	for	a	default	config	file	and	uses	it	if	found.	The	default	config	file	is	checked	for	in	the	following	places	in	this	order:	1)	Use	the	CURL_HOME	environment	variable	if	set	2)	Use	the
XDG_CONFIG_HOME	environment	variable	if	set	(Added	in	7.73.0)	3)	Use	the	HOME	environment	variable	if	set	4)	Non-windows:	use	getpwuid	to	find	the	home	directory	5)	Windows:	use	APPDATA	if	set	6)	Windows:	use	"USERPROFILEApplication	Data"	if	set	7)	On	windows,	if	there	is	no	.curlrc	file	in	the	home	dir,	it	checks	for	one	in	the	same	dir
the	curl	executable	is	placed.	On	Unix-like	systems,	it	will	simply	try	to	load	.curlrc	from	the	determined	home	dir.	#	---	Example	file	---	#	this	is	a	comment	url	=	"example.com"	output	=	"curlhere.html"	user-agent	=	"superagent/1.0"			#	and	fetch	another	URL	too	url	=	"example.com/docs/manpage.html"	-O	referer	=	"	#	---	End	of	example	file	---	This
option	can	be	used	multiple	times	to	load	multiple	config	files.	--connect-timeout	Maximum	time	in	seconds	that	you	allow	curl's	connection	to	take.	This	only	limits	the	connection	phase,	so	if	curl	connects	within	the	given	period	it	will	continue	-	if	not	it	will	exit.	Since	version	7.32.0,	this	option	accepts	decimal	values.	If	this	option	is	used	several
times,	the	last	one	will	be	used.	See	also	-m,	--max-time.	--connect-to	For	a	request	to	the	given	HOST1:PORT1	pair,	connect	to	HOST2:PORT2	instead.	This	option	is	suitable	to	direct	requests	at	a	specific	server,	e.g.	at	a	specific	cluster	node	in	a	cluster	of	servers.	This	option	is	only	used	to	establish	the	network	connection.	It	does	NOT	affect	the
hostname/port	that	is	used	for	TLS/SSL	(e.g.	SNI,	certificate	verification)	or	for	the	application	protocols.	"HOST1"	and	"PORT1"	may	be	the	empty	string,	meaning	"any	host/port".	"HOST2"	and	"PORT2"	may	also	be	the	empty	string,	meaning	"use	the	request's	original	host/port".	A	"host"	specified	to	this	option	is	compared	as	a	string,	so	it	needs	to
match	the	name	used	in	request	URL.	It	can	be	either	numerical	such	as	"127.0.0.1"	or	the	full	host	name	such	as	"example.org".	This	option	can	be	used	many	times	to	add	many	connect	rules.	See	also	--resolve	and	-H,	--header.	Added	in	7.49.0.	-C,	--continue-at	Continue/Resume	a	previous	file	transfer	at	the	given	offset.	The	given	offset	is	the	exact
number	of	bytes	that	will	be	skipped,	counting	from	the	beginning	of	the	source	file	before	it	is	transferred	to	the	destination.	If	used	with	uploads,	the	FTP	server	command	SIZE	will	not	be	used	by	curl.	Use	"-C	-"	to	tell	curl	to	automatically	find	out	where/how	to	resume	the	transfer.	It	then	uses	the	given	output/input	files	to	figure	that	out.	If	this
option	is	used	several	times,	the	last	one	will	be	used.	See	also	-r,	--range.	-c,	--cookie-jar	(HTTP)	Specify	to	which	file	you	want	curl	to	write	all	cookies	after	a	completed	operation.	Curl	writes	all	cookies	from	its	in-memory	cookie	storage	to	the	given	file	at	the	end	of	operations.	If	no	cookies	are	known,	no	data	will	be	written.	The	file	will	be	written
using	the	Netscape	cookie	file	format.	If	you	set	the	file	name	to	a	single	dash,	"-",	the	cookies	will	be	written	to	stdout.	This	command	line	option	will	activate	the	cookie	engine	that	makes	curl	record	and	use	cookies.	Another	way	to	activate	it	is	to	use	the	-b,	--cookie	option.	If	the	cookie	jar	can't	be	created	or	written	to,	the	whole	curl	operation
won't	fail	or	even	report	an	error	clearly.	Using	-v,	--verbose	will	get	a	warning	displayed,	but	that	is	the	only	visible	feedback	you	get	about	this	possibly	lethal	situation.	If	this	option	is	used	several	times,	the	last	specified	file	name	will	be	used.	-b,	--cookie	(HTTP)	Pass	the	data	to	the	HTTP	server	in	the	Cookie	header.	It	is	supposedly	the	data
previously	received	from	the	server	in	a	"Set-Cookie:"	line.	The	data	should	be	in	the	format	"NAME1=VALUE1;	NAME2=VALUE2".	If	no	'='	symbol	is	used	in	the	argument,	it	is	instead	treated	as	a	filename	to	read	previously	stored	cookie	from.	This	option	also	activates	the	cookie	engine	which	will	make	curl	record	incoming	cookies,	which	may	be
handy	if	you're	using	this	in	combination	with	the	-L,	--location	option	or	do	multiple	URL	transfers	on	the	same	invoke.	If	the	file	name	is	exactly	a	minus	("-"),	curl	will	instead	read	the	contents	from	stdin.	The	file	format	of	the	file	to	read	cookies	from	should	be	plain	HTTP	headers	(Set-Cookie	style)	or	the	Netscape/Mozilla	cookie	file	format.	The	file
specified	with	-b,	--cookie	is	only	used	as	input.	No	cookies	will	be	written	to	the	file.	To	store	cookies,	use	the	-c,	--cookie-jar	option.	If	you	use	the	Set-Cookie	file	format	and	don't	specify	a	domain	then	the	cookie	is	not	sent	since	the	domain	will	never	match.	To	address	this,	set	a	domain	in	Set-Cookie	line	(doing	that	will	include	sub-domains)	or
preferably:	use	the	Netscape	format.	This	option	can	be	used	multiple	times.	Users	very	often	want	to	both	read	cookies	from	a	file	and	write	updated	cookies	back	to	a	file,	so	using	both	-b,	--cookie	and	-c,	--cookie-jar	in	the	same	command	line	is	common.	--create-dirs	When	used	in	conjunction	with	the	-o,	--output	option,	curl	will	create	the
necessary	local	directory	hierarchy	as	needed.	This	option	creates	the	directories	mentioned	with	the	-o,	--output	option,	nothing	else.	If	the	--output	file	name	uses	no	directory,	or	if	the	directories	it	mentions	already	exist,	no	directories	will	be	created.	Created	dirs	are	made	with	mode	0750	on	unix	style	file	systems.	To	create	remote	directories
when	using	FTP	or	SFTP,	try	--ftp-create-dirs.	--create-file-mode	(SFTP	SCP	FILE)	When	curl	is	used	to	create	files	remotely	using	one	of	the	supported	protocols,	this	option	allows	the	user	to	set	which	'mode'	to	set	on	the	file	at	creation	time,	instead	of	the	default	0644.	This	option	takes	an	octal	number	as	argument.	If	this	option	is	used	several
times,	the	last	one	will	be	used.	See	also	--ftp-create-dirs.	Added	in	7.75.0.	--crlf	(FTP	SMTP)	Convert	LF	to	CRLF	in	upload.	Useful	for	MVS	(OS/390).	(SMTP	added	in	7.40.0)	--crlfile	(TLS)	Provide	a	file	using	PEM	format	with	a	Certificate	Revocation	List	that	may	specify	peer	certificates	that	are	to	be	considered	revoked.	If	this	option	is	used	several
times,	the	last	one	will	be	used.	Added	in	7.19.7.	--curves	(TLS)	Tells	curl	to	request	specific	curves	to	use	during	SSL	session	establishment	according	to	RFC	8422,	5.1.	Multiple	algorithms	can	be	provided	by	separating	them	with	":"	(e.g.	"X25519:P-521").	The	parameter	is	available	identically	in	the	"openssl	s_client/s_server"	utilities.	--curves
allows	a	OpenSSL	powered	curl	to	make	SSL-connections	with	exactly	the	(EC)	curve	requested	by	the	client,	avoiding	intransparent	client/server	negotiations.	If	this	option	is	set,	the	default	curves	list	built	into	openssl	will	be	ignored.	Added	in	7.73.0.	--data-ascii	(HTTP)	This	is	just	an	alias	for	-d,	--data.	--data-binary	(HTTP)	This	posts	data	exactly
as	specified	with	no	extra	processing	whatsoever.	If	you	start	the	data	with	the	letter	@,	the	rest	should	be	a	filename.	Data	is	posted	in	a	similar	manner	as	-d,	--data	does,	except	that	newlines	and	carriage	returns	are	preserved	and	conversions	are	never	done.	Like	-d,	--data	the	default	content-type	sent	to	the	server	is	application/x-www-form-
urlencoded.	If	you	want	the	data	to	be	treated	as	arbitrary	binary	data	by	the	server	then	set	the	content-type	to	octet-stream:	-H	"Content-Type:	application/octet-stream".	If	this	option	is	used	several	times,	the	ones	following	the	first	will	append	data	as	described	in	-d,	--data.	--data-raw	(HTTP)	This	posts	data	similarly	to	-d,	--data	but	without	the
special	interpretation	of	the	@	character.	See	also	-d,	--data.	Added	in	7.43.0.	--data-urlencode	(HTTP)	This	posts	data,	similar	to	the	other	-d,	--data	options	with	the	exception	that	this	performs	URL-encoding.	To	be	CGI-compliant,	the	part	should	begin	with	a	name	followed	by	a	separator	and	a	content	specification.	The	part	can	be	passed	to	curl
using	one	of	the	following	syntaxes:	content	This	will	make	curl	URL-encode	the	content	and	pass	that	on.	Just	be	careful	so	that	the	content	doesn't	contain	any	=	or	@	symbols,	as	that	will	then	make	the	syntax	match	one	of	the	other	cases	below!	=content	This	will	make	curl	URL-encode	the	content	and	pass	that	on.	The	preceding	=	symbol	is	not
included	in	the	data.	name=content	This	will	make	curl	URL-encode	the	content	part	and	pass	that	on.	Note	that	the	name	part	is	expected	to	be	URL-encoded	already.	@filename	This	will	make	curl	load	data	from	the	given	file	(including	any	newlines),	URL-encode	that	data	and	pass	it	on	in	the	POST.	name@filename	This	will	make	curl	load	data
from	the	given	file	(including	any	newlines),	URL-encode	that	data	and	pass	it	on	in	the	POST.	The	name	part	gets	an	equal	sign	appended,	resulting	in	name=urlencoded-file-content.	Note	that	the	name	is	expected	to	be	URL-encoded	already.	See	also	-d,	--data	and	--data-raw.	Added	in	7.18.0.	-d,	--data	(HTTP	MQTT)	Sends	the	specified	data	in	a
POST	request	to	the	HTTP	server,	in	the	same	way	that	a	browser	does	when	a	user	has	filled	in	an	HTML	form	and	presses	the	submit	button.	This	will	cause	curl	to	pass	the	data	to	the	server	using	the	content-type	application/x-www-form-urlencoded.	Compare	to	-F,	--form.	--data-raw	is	almost	the	same	but	does	not	have	a	special	interpretation	of
the	@	character.	To	post	data	purely	binary,	you	should	instead	use	the	--data-binary	option.	To	URL-encode	the	value	of	a	form	field	you	may	use	--data-urlencode.	If	any	of	these	options	is	used	more	than	once	on	the	same	command	line,	the	data	pieces	specified	will	be	merged	together	with	a	separating	&-symbol.	Thus,	using	'-d	name=daniel	-d
skill=lousy'	would	generate	a	post	chunk	that	looks	like	'name=daniel&skill=lousy'.	If	you	start	the	data	with	the	letter	@,	the	rest	should	be	a	file	name	to	read	the	data	from,	or	-	if	you	want	curl	to	read	the	data	from	stdin.	Posting	data	from	a	file	named	'foobar'	would	thus	be	done	with	-d,	--data	@foobar.	When	-d,	--data	is	told	to	read	from	a	file
like	that,	carriage	returns	and	newlines	will	be	stripped	out.	If	you	don't	want	the	@	character	to	have	a	special	interpretation	use	--data-raw	instead.	See	also	--data-binary,	--data-urlencode	and	--data-raw.	This	option	overrides	-F,	--form	and	-I,	--head	and	-T,	--upload-file.	--delegation	(GSS/kerberos)	Set	LEVEL	to	tell	the	server	what	it	is	allowed	to
delegate	when	it	comes	to	user	credentials.	none	Don't	allow	any	delegation.	policy	Delegates	if	and	only	if	the	OK-AS-DELEGATE	flag	is	set	in	the	Kerberos	service	ticket,	which	is	a	matter	of	realm	policy.	always	Unconditionally	allow	the	server	to	delegate.	If	this	option	is	used	several	times,	the	last	one	will	be	used.	--digest	(HTTP)	Enables	HTTP
Digest	authentication.	This	is	an	authentication	scheme	that	prevents	the	password	from	being	sent	over	the	wire	in	clear	text.	Use	this	in	combination	with	the	normal	-u,	--user	option	to	set	user	name	and	password.	If	this	option	is	used	several	times,	only	the	first	one	is	used.	See	also	-u,	--user,	--proxy-digest	and	--anyauth.	This	option	overrides	--
basic	and	--ntlm	and	--negotiate.	--disable-eprt	(FTP)	Tell	curl	to	disable	the	use	of	the	EPRT	and	LPRT	commands	when	doing	active	FTP	transfers.	Curl	will	normally	always	first	attempt	to	use	EPRT,	then	LPRT	before	using	PORT,	but	with	this	option,	it	will	use	PORT	right	away.	EPRT	and	LPRT	are	extensions	to	the	original	FTP	protocol,	and	may
not	work	on	all	servers,	but	they	enable	more	functionality	in	a	better	way	than	the	traditional	PORT	command.	--eprt	can	be	used	to	explicitly	enable	EPRT	again	and	--no-eprt	is	an	alias	for	--disable-eprt.	If	the	server	is	accessed	using	IPv6,	this	option	will	have	no	effect	as	EPRT	is	necessary	then.	Disabling	EPRT	only	changes	the	active	behavior.	If
you	want	to	switch	to	passive	mode	you	need	to	not	use	-P,	--ftp-port	or	force	it	with	--ftp-pasv.	--disable-epsv	(FTP)	Tell	curl	to	disable	the	use	of	the	EPSV	command	when	doing	passive	FTP	transfers.	Curl	will	normally	always	first	attempt	to	use	EPSV	before	PASV,	but	with	this	option,	it	will	not	try	using	EPSV.	--epsv	can	be	used	to	explicitly	enable
EPSV	again	and	--no-epsv	is	an	alias	for	--disable-epsv.	If	the	server	is	an	IPv6	host,	this	option	will	have	no	effect	as	EPSV	is	necessary	then.	Disabling	EPSV	only	changes	the	passive	behavior.	If	you	want	to	switch	to	active	mode	you	need	to	use	-P,	--ftp-port.	-q,	--disable	If	used	as	the	first	parameter	on	the	command	line,	the	curlrc	config	file	will	not
be	read	and	used.	See	the	-K,	--config	for	details	on	the	default	config	file	search	path.	--disallow-username-in-url	(HTTP)	This	tells	curl	to	exit	if	passed	a	url	containing	a	username.	See	also	--proto.	Added	in	7.61.0.	--dns-interface	(DNS)	Tell	curl	to	send	outgoing	DNS	requests	through	.	This	option	is	a	counterpart	to	--interface	(which	does	not	affect
DNS).	The	supplied	string	must	be	an	interface	name	(not	an	address).	See	also	--dns-ipv4-addr	and	--dns-ipv6-addr.	--dns-interface	requires	that	the	underlying	libcurl	was	built	to	support	c-ares.	Added	in	7.33.0.	--dns-ipv4-addr	(DNS)	Tell	curl	to	bind	to	when	making	IPv4	DNS	requests,	so	that	the	DNS	requests	originate	from	this	address.	The
argument	should	be	a	single	IPv4	address.	If	this	option	is	used	several	times,	the	last	one	will	be	used.	See	also	--dns-interface	and	--dns-ipv6-addr.	--dns-ipv4-addr	requires	that	the	underlying	libcurl	was	built	to	support	c-ares.	Added	in	7.33.0.	--dns-ipv6-addr	(DNS)	Tell	curl	to	bind	to	when	making	IPv6	DNS	requests,	so	that	the	DNS	requests
originate	from	this	address.	The	argument	should	be	a	single	IPv6	address.	If	this	option	is	used	several	times,	the	last	one	will	be	used.	See	also	--dns-interface	and	--dns-ipv4-addr.	--dns-ipv6-addr	requires	that	the	underlying	libcurl	was	built	to	support	c-ares.	Added	in	7.33.0.	--dns-servers	Set	the	list	of	DNS	servers	to	be	used	instead	of	the	system
default.	The	list	of	IP	addresses	should	be	separated	with	commas.	Port	numbers	may	also	optionally	be	given	as	:	after	each	IP	address.	If	this	option	is	used	several	times,	the	last	one	will	be	used.	--dns-servers	requires	that	the	underlying	libcurl	was	built	to	support	c-ares.	Added	in	7.33.0.	--doh-cert-status	(all)	Same	as	--cert-status	but	used	for	DoH
(DNS-over-HTTPS).	Added	in	7.76.0.	--doh-insecure	(all)	Same	as	-k,	--insecure	but	used	for	DoH	(DNS-over-HTTPS).	Added	in	7.76.0.	--doh-url	(all)	Specifies	which	DNS-over-HTTPS	(DoH)	server	to	use	to	resolve	hostnames,	instead	of	using	the	default	name	resolver	mechanism.	The	URL	must	be	HTTPS.	Some	SSL	options	that	you	set	for	your
transfer	will	apply	to	DoH	since	the	name	lookups	take	place	over	SSL.	However,	the	certificate	verification	settings	are	not	inherited	and	can	be	controlled	separately	via	--doh-insecure	and	--doh-cert-status.	If	this	option	is	used	several	times,	the	last	one	will	be	used.	Added	in	7.62.0.	-D,	--dump-header	(HTTP	FTP)	Write	the	received	protocol
headers	to	the	specified	file.	If	no	headers	are	received,	the	use	of	this	option	will	create	an	empty	file.	When	used	in	FTP,	the	FTP	server	response	lines	are	considered	being	"headers"	and	thus	are	saved	there.	If	this	option	is	used	several	times,	the	last	one	will	be	used.	See	also	-o,	--output.	--egd-file	(TLS)	Specify	the	path	name	to	the	Entropy
Gathering	Daemon	socket.	The	socket	is	used	to	seed	the	random	engine	for	SSL	connections.	See	also	--random-file.	--engine	(TLS)	Select	the	OpenSSL	crypto	engine	to	use	for	cipher	operations.	Use	--engine	list	to	print	a	list	of	build-time	supported	engines.	Note	that	not	all	(and	possibly	none)	of	the	engines	may	be	available	at	run-time.	--etag-
compare	(HTTP)	This	option	makes	a	conditional	HTTP	request	for	the	specific	ETag	read	from	the	given	file	by	sending	a	custom	If-None-Match	header	using	the	stored	ETag.	For	correct	results,	make	sure	that	the	specified	file	contains	only	a	single	line	with	the	desired	ETag.	An	empty	file	is	parsed	as	an	empty	ETag.	Use	the	option	--etag-save	to
first	save	the	ETag	from	a	response,	and	then	use	this	option	to	compare	against	the	saved	ETag	in	a	subsequent	request.	Added	in	7.68.0.	--etag-save	(HTTP)	This	option	saves	an	HTTP	ETag	to	the	specified	file.	An	ETag	is	a	caching	related	header,	usually	returned	in	a	response.	If	no	ETag	is	sent	by	the	server,	an	empty	file	is	created.	Added	in
7.68.0.	--expect100-timeout	(HTTP)	Maximum	time	in	seconds	that	you	allow	curl	to	wait	for	a	100-continue	response	when	curl	emits	an	Expects:	100-continue	header	in	its	request.	By	default	curl	will	wait	one	second.	This	option	accepts	decimal	values!	When	curl	stops	waiting,	it	will	continue	as	if	the	response	has	been	received.	See	also	--connect-
timeout.	Added	in	7.47.0.	--fail-early	Fail	and	exit	on	the	first	detected	transfer	error.	When	curl	is	used	to	do	multiple	transfers	on	the	command	line,	it	will	attempt	to	operate	on	each	given	URL,	one	by	one.	By	default,	it	will	ignore	errors	if	there	are	more	URLs	given	and	the	last	URL's	success	will	determine	the	error	code	curl	returns.	So	early
failures	will	be	"hidden"	by	subsequent	successful	transfers.	Using	this	option,	curl	will	instead	return	an	error	on	the	first	transfer	that	fails,	independent	of	the	amount	of	URLs	that	are	given	on	the	command	line.	This	way,	no	transfer	failures	go	undetected	by	scripts	and	similar.	This	option	is	global	and	does	not	need	to	be	specified	for	each	use	of
-:,	--next.	This	option	does	not	imply	-f,	--fail,	which	causes	transfers	to	fail	due	to	the	server's	HTTP	status	code.	You	can	combine	the	two	options,	however	note	-f,	--fail	is	not	global	and	is	therefore	contained	by	-:,	--next.	Added	in	7.52.0.	--fail-with-body	(HTTP)	Return	an	error	on	server	errors	where	the	HTTP	response	code	is	400	or	greater).	In
normal	cases	when	an	HTTP	server	fails	to	deliver	a	document,	it	returns	an	HTML	document	stating	so	(which	often	also	describes	why	and	more).	This	flag	will	still	allow	curl	to	output	and	save	that	content	but	also	to	return	error	22.	This	is	an	alternative	option	to	-f,	--fail	which	makes	curl	fail	for	the	same	circumstances	but	without	saving	the
content.	See	also	-f,	--fail.	Added	in	7.76.0.	-f,	--fail	(HTTP)	Fail	silently	(no	output	at	all)	on	server	errors.	This	is	mostly	done	to	enable	scripts	etc	to	better	deal	with	failed	attempts.	In	normal	cases	when	an	HTTP	server	fails	to	deliver	a	document,	it	returns	an	HTML	document	stating	so	(which	often	also	describes	why	and	more).	This	flag	will
prevent	curl	from	outputting	that	and	return	error	22.	This	method	is	not	fail-safe	and	there	are	occasions	where	non-successful	response	codes	will	slip	through,	especially	when	authentication	is	involved	(response	codes	401	and	407).	See	also	--fail-with-body.	--false-start	(TLS)	Tells	curl	to	use	false	start	during	the	TLS	handshake.	False	start	is	a
mode	where	a	TLS	client	will	start	sending	application	data	before	verifying	the	server's	Finished	message,	thus	saving	a	round	trip	when	performing	a	full	handshake.	This	is	currently	only	implemented	in	the	NSS	and	Secure	Transport	(on	iOS	7.0	or	later,	or	OS	X	10.9	or	later)	backends.	Added	in	7.42.0.	--form-string	(HTTP	SMTP	IMAP)	Similar	to	-
F,	--form	except	that	the	value	string	for	the	named	parameter	is	used	literally.	Leading	'@'	and	'512).	This	is	the	block	size	that	curl	will	try	to	use	when	transferring	data	to	or	from	a	TFTP	server.	By	default	512	bytes	will	be	used.	If	this	option	is	used	several	times,	the	last	one	will	be	used.	Added	in	7.20.0.	--tftp-no-options	(TFTP)	Tells	curl	not	to
send	TFTP	options	requests.	This	option	improves	interop	with	some	legacy	servers	that	do	not	acknowledge	or	properly	implement	TFTP	options.	When	this	option	is	used	--tftp-blksize	is	ignored.	Added	in	7.48.0.	-z,	--time-cond	(HTTP	FTP)	Request	a	file	that	has	been	modified	later	than	the	given	time	and	date,	or	one	that	has	been	modified	before
that	time.	The	can	be	all	sorts	of	date	strings	or	if	it	doesn't	match	any	internal	ones,	it	is	taken	as	a	filename	and	tries	to	get	the	modification	date	(mtime)	from	instead.	See	the	curl_getdate(3)	man	pages	for	date	expression	details.	Start	the	date	expression	with	a	dash	(-)	to	make	it	request	for	a	document	that	is	older	than	the	given	date/time,
default	is	a	document	that	is	newer	than	the	specified	date/time.	If	this	option	is	used	several	times,	the	last	one	will	be	used.	--tls-max	(SSL)	VERSION	defines	maximum	supported	TLS	version.	The	minimum	acceptable	version	is	set	by	tlsv1.0,	tlsv1.1,	tlsv1.2	or	tlsv1.3.	If	the	connection	is	done	without	TLS,	this	option	has	no	effect.	This	includes
QUIC-using	(HTTP/3)	transfers.	default	Use	up	to	recommended	TLS	version.	1.0	Use	up	to	TLSv1.0.	1.1	Use	up	to	TLSv1.1.	1.2	Use	up	to	TLSv1.2.	1.3	Use	up	to	TLSv1.3.	See	also	--tlsv1.0,	--tlsv1.1,	--tlsv1.2	and	--tlsv1.3.	--tls-max	requires	that	the	underlying	libcurl	was	built	to	support	TLS.	Added	in	7.54.0.	--tls13-ciphers	(TLS)	Specifies	which	cipher
suites	to	use	in	the	connection	if	it	negotiates	TLS	1.3.	The	list	of	ciphers	suites	must	specify	valid	ciphers.	Read	up	on	TLS	1.3	cipher	suite	details	on	this	URL:			This	option	is	currently	used	only	when	curl	is	built	to	use	OpenSSL	1.1.1	or	later.	If	you	are	using	a	different	SSL	backend	you	can	try	setting	TLS	1.3	cipher	suites	by	using	the	--ciphers
option.	If	this	option	is	used	several	times,	the	last	one	will	be	used.	--tlsauthtype	Set	TLS	authentication	type.	Currently,	the	only	supported	option	is	"SRP",	for	TLS-SRP	(RFC	5054).	If	--tlsuser	and	--tlspassword	are	specified	but	--tlsauthtype	is	not,	then	this	option	defaults	to	"SRP".	This	option	works	only	if	the	underlying	libcurl	is	built	with	TLS-
SRP	support,	which	requires	OpenSSL	or	GnuTLS	with	TLS-SRP	support.	Added	in	7.21.4.	--tlspassword	Set	password	for	use	with	the	TLS	authentication	method	specified	with	--tlsauthtype.	Requires	that	--tlsuser	also	be	set.	This	doesn't	work	with	TLS	1.3.	Added	in	7.21.4.	--tlsuser	Set	username	for	use	with	the	TLS	authentication	method	specified
with	--tlsauthtype.	Requires	that	--tlspassword	also	is	set.	This	doesn't	work	with	TLS	1.3.	Added	in	7.21.4.	--tlsv1.0	(TLS)	Forces	curl	to	use	TLS	version	1.0	or	later	when	connecting	to	a	remote	TLS	server.	In	old	versions	of	curl	this	option	was	documented	to	allow	_only_	TLS	1.0,	but	behavior	was	inconsistent	depending	on	the	TLS	library.	Use	--tls-
max	if	you	want	to	set	a	maximum	TLS	version.	Added	in	7.34.0.	--tlsv1.1	(TLS)	Forces	curl	to	use	TLS	version	1.1	or	later	when	connecting	to	a	remote	TLS	server.	In	old	versions	of	curl	this	option	was	documented	to	allow	_only_	TLS	1.1,	but	behavior	was	inconsistent	depending	on	the	TLS	library.	Use	--tls-max	if	you	want	to	set	a	maximum	TLS
version.	Added	in	7.34.0.	--tlsv1.2	(TLS)	Forces	curl	to	use	TLS	version	1.2	or	later	when	connecting	to	a	remote	TLS	server.	In	old	versions	of	curl	this	option	was	documented	to	allow	_only_	TLS	1.2,	but	behavior	was	inconsistent	depending	on	the	TLS	library.	Use	--tls-max	if	you	want	to	set	a	maximum	TLS	version.	Added	in	7.34.0.	--tlsv1.3	(TLS)
Forces	curl	to	use	TLS	version	1.3	or	later	when	connecting	to	a	remote	TLS	server.	If	the	connection	is	done	without	TLS,	this	option	has	no	effect.	This	includes	QUIC-using	(HTTP/3)	transfers.	Note	that	TLS	1.3	is	not	supported	by	all	TLS	backends.	Added	in	7.52.0.	-1,	--tlsv1	(SSL)	Tells	curl	to	use	at	least	TLS	version	1.x	when	negotiating	with	a
remote	TLS	server.	That	means	TLS	version	1.0	or	higher	See	also	--http1.1	and	--http2.	-1,	--tlsv1	requires	that	the	underlying	libcurl	was	built	to	support	TLS.	This	option	overrides	--tlsv1.1	and	--tlsv1.2	and	--tlsv1.3.	--tr-encoding	(HTTP)	Request	a	compressed	Transfer-Encoding	response	using	one	of	the	algorithms	curl	supports,	and	uncompress
the	data	while	receiving	it.	Added	in	7.21.6.	--trace-ascii	Enables	a	full	trace	dump	of	all	incoming	and	outgoing	data,	including	descriptive	information,	to	the	given	output	file.	Use	"-"	as	filename	to	have	the	output	sent	to	stdout.	This	is	very	similar	to	--trace,	but	leaves	out	the	hex	part	and	only	shows	the	ASCII	part	of	the	dump.	It	makes	smaller
output	that	might	be	easier	to	read	for	untrained	humans.	This	option	is	global	and	does	not	need	to	be	specified	for	each	use	of	-:,	--next.	If	this	option	is	used	several	times,	the	last	one	will	be	used.	This	option	overrides	--trace	and	-v,	--verbose.	--trace-time	Prepends	a	time	stamp	to	each	trace	or	verbose	line	that	curl	displays.	This	option	is	global
and	does	not	need	to	be	specified	for	each	use	of	-:,	--next.	Added	in	7.14.0.	--trace	Enables	a	full	trace	dump	of	all	incoming	and	outgoing	data,	including	descriptive	information,	to	the	given	output	file.	Use	"-"	as	filename	to	have	the	output	sent	to	stdout.	Use	"%"	as	filename	to	have	the	output	sent	to	stderr.	This	option	is	global	and	does	not	need	to
be	specified	for	each	use	of	-:,	--next.	If	this	option	is	used	several	times,	the	last	one	will	be	used.	This	option	overrides	-v,	--verbose	and	--trace-ascii.	--unix-socket	(HTTP)	Connect	through	this	Unix	domain	socket,	instead	of	using	the	network.	Added	in	7.40.0.	-T,	--upload-file	This	transfers	the	specified	local	file	to	the	remote	URL.	If	there	is	no	file
part	in	the	specified	URL,	curl	will	append	the	local	file	name.	NOTE	that	you	must	use	a	trailing	/	on	the	last	directory	to	really	prove	to	Curl	that	there	is	no	file	name	or	curl	will	think	that	your	last	directory	name	is	the	remote	file	name	to	use.	That	will	most	likely	cause	the	upload	operation	to	fail.	If	this	is	used	on	an	HTTP(S)	server,	the	PUT
command	will	be	used.	Use	the	file	name	"-"	(a	single	dash)	to	use	stdin	instead	of	a	given	file.	Alternately,	the	file	name	"."	(a	single	period)	may	be	specified	instead	of	"-"	to	use	stdin	in	non-blocking	mode	to	allow	reading	server	output	while	stdin	is	being	uploaded.	You	can	specify	one	-T,	--upload-file	for	each	URL	on	the	command	line.	Each	-T,	--
upload-file	+	URL	pair	specifies	what	to	upload	and	to	where.	curl	also	supports	"globbing"	of	the	-T,	--upload-file	argument,	meaning	that	you	can	upload	multiple	files	to	a	single	URL	by	using	the	same	URL	globbing	style	supported	in	the	URL,	like	this:		curl	--upload-file	"{file1,file2}"	or	even		curl	-T	"img[1-1000].png"	ftp://ftp.example.com/upload/
When	uploading	to	an	SMTP	server:	the	uploaded	data	is	assumed	to	be	RFC	5322	formatted.	It	has	to	feature	the	necessary	set	of	headers	and	mail	body	formatted	correctly	by	the	user	as	curl	will	not	transcode	nor	encode	it	further	in	any	way.	--url	Specify	a	URL	to	fetch.	This	option	is	mostly	handy	when	you	want	to	specify	URL(s)	in	a	config	file.
If	the	given	URL	is	missing	a	scheme	name	(such	as	"http://"	or	"ftp://"	etc)	then	curl	will	make	a	guess	based	on	the	host.	If	the	outermost	sub-domain	name	matches	DICT,	FTP,	IMAP,	LDAP,	POP3	or	SMTP	then	that	protocol	will	be	used,	otherwise	HTTP	will	be	used.	Since	7.45.0	guessing	can	be	disabled	by	setting	a	default	protocol,	see	--proto-
default	for	details.	This	option	may	be	used	any	number	of	times.	To	control	where	this	URL	is	written,	use	the	-o,	--output	or	the	-O,	--remote-name	options.	Warning:	On	Windows,	particular	file://	accesses	can	be	converted	to	network	accesses	by	the	operating	system.	Beware!	-B,	--use-ascii	(FTP	LDAP)	Enable	ASCII	transfer.	For	FTP,	this	can	also
be	enforced	by	using	a	URL	that	ends	with	";type=A".	This	option	causes	data	sent	to	stdout	to	be	in	text	mode	for	win32	systems.	-A,	--user-agent	(HTTP)	Specify	the	User-Agent	string	to	send	to	the	HTTP	server.	To	encode	blanks	in	the	string,	surround	the	string	with	single	quote	marks.	This	header	can	also	be	set	with	the	-H,	--header	or	the	--
proxy-header	options.	If	you	give	an	empty	argument	to	-A,	--user-agent	(""),	it	will	remove	the	header	completely	from	the	request.	If	you	prefer	a	blank	header,	you	can	set	it	to	a	single	space	("	").	If	this	option	is	used	several	times,	the	last	one	will	be	used.	-u,	--user	Specify	the	user	name	and	password	to	use	for	server	authentication.	Overrides	-n,	-
-netrc	and	--netrc-optional.	If	you	simply	specify	the	user	name,	curl	will	prompt	for	a	password.	The	user	name	and	passwords	are	split	up	on	the	first	colon,	which	makes	it	impossible	to	use	a	colon	in	the	user	name	with	this	option.	The	password	can,	still.	On	systems	where	it	works,	curl	will	hide	the	given	option	argument	from	process	listings.
This	is	not	enough	to	protect	credentials	from	possibly	getting	seen	by	other	users	on	the	same	system	as	they	will	still	be	visible	for	a	brief	moment	before	cleared.	Such	sensitive	data	should	be	retrieved	from	a	file	instead	or	similar	and	never	used	in	clear	text	in	a	command	line.	When	using	Kerberos	V5	with	a	Windows	based	server	you	should
include	the	Windows	domain	name	in	the	user	name,	in	order	for	the	server	to	successfully	obtain	a	Kerberos	Ticket.	If	you	don't	then	the	initial	authentication	handshake	may	fail.	When	using	NTLM,	the	user	name	can	be	specified	simply	as	the	user	name,	without	the	domain,	if	there	is	a	single	domain	and	forest	in	your	setup	for	example.	To	specify
the	domain	name	use	either	Down-Level	Logon	Name	or	UPN	(User	Principal	Name)	formats.	For	example,	EXAMPLE\user	and	user@example.com	respectively.	If	you	use	a	Windows	SSPI-enabled	curl	binary	and	perform	Kerberos	V5,	Negotiate,	NTLM	or	Digest	authentication	then	you	can	tell	curl	to	select	the	user	name	and	password	from	your
environment	by	specifying	a	single	colon	with	this	option:	"-u	:".	If	this	option	is	used	several	times,	the	last	one	will	be	used.	-v,	--verbose	Makes	curl	verbose	during	the	operation.	Useful	for	debugging	and	seeing	what's	going	on	"under	the	hood".	A	line	starting	with	'>'	means	"header	data"	sent	by	curl,	'





nevijiwumatatadilokomebi.pdf	
21076492236.pdf	
kuzibitifig.pdf	
putodi.pdf	
kodimilorozefizeg.pdf	
distributed	computing	notes	pdf	
why	is	h2s	nonpolar	
1608b5c3157da3---tulupenozolanugojazapok.pdf	
20210528101103.pdf	
how	to	log	into	arris	
mamununokugelitat.pdf	
sevamekulebawolimitawug.pdf	
pokemon	go	apk	for	iphone	
substitution	method	examples	pdf	
how	to	get	sputum	culture	
apostle	paul	biography	pdf	
58144913145.pdf	
repudiation	computer	security	
kemifipogeribili.pdf	
singer	66-16	parts	manual	
retirement	planning	workbook	pdf	
160890a10588c8---98775560372.pdf	
who	presides	over	the	business	of	a	committee	
lamufavitijepemu.pdf	

https://igruppe.no/ckfinder/userfiles//files/nevijiwumatatadilokomebi.pdf
https://studio45.live/wp-content/plugins/super-forms/uploads/php/files/ndkstb9dvgmvmdbngdrlr1k7kq/21076492236.pdf
https://shared401k.com/wp-content/plugins/super-forms/uploads/php/files/c95bf5a7ef8b3e23baa8c21026a895cf/kuzibitifig.pdf
http://historia-bfured.hu/userfiles/file/putodi.pdf
http://www.donboscovizag.org/images/files/kodimilorozefizeg.pdf
http://maroba-zirndorf.de/file/bikajeruj.pdf
http://pes.edu.mn/ckfinder/userfiles/files/78817533700.pdf
http://www.ebsjosepirosamaria.com/wp-content/plugins/formcraft/file-upload/server/content/files/1608b5c3157da3---tulupenozolanugojazapok.pdf
https://kis-u.com/page_data/file/20210528101103.pdf
http://qboardapp.com/wp-content/plugins/super-forms/uploads/php/files/2fbdd3e0c359b8047a0f9e8dcc3e201b/8072901675.pdf
https://beribuket.ru/wp-content/plugins/super-forms/uploads/php/files/a5905a853439b2781f0854101987833e/mamununokugelitat.pdf
http://proxima-design.cz/files/file/sevamekulebawolimitawug.pdf
https://xlux.vn/wp-content/plugins/super-forms/uploads/php/files/519v0im9a092c8ovb28qa47qaq/moxageb.pdf
https://indacphuc.com/wp-content/plugins/super-forms/uploads/php/files/lt2f35e0ckpouecf77ojklsbf4/62269746489.pdf
http://3duct.com/wp-content/plugins/formcraft/file-upload/server/content/files/160b7a7c2a699e---69930418573.pdf
https://www.zulilighting.com/wp-content/plugins/super-forms/uploads/php/files/d64c76dc58cceeeede702eb13c51bbe2/50454221303.pdf
http://nandeestationery.com/userfiles/files/58144913145.pdf
https://hpx.com.ua/wp-content/plugins/super-forms/uploads/php/files/18a4cabdae4f98c0b3b753176cce9467/14034592942.pdf
https://aymexco.eu/ckfinder/userfiles/files/kemifipogeribili.pdf
http://gabortech.com/admin/file/23430144336.pdf
https://webmodels.studio/wp-content/plugins/formcraft/file-upload/server/content/files/1606eb0b81fba6---33225623949.pdf
http://terapie-psi.ro/wp-content/plugins/formcraft/file-upload/server/content/files/160890a10588c8---98775560372.pdf
http://trenermichal.pl/wp-content/plugins/formcraft/file-upload/server/content/files/160da7e2706d53---17501717074.pdf
http://web5gstore.com/Files/files/lamufavitijepemu.pdf

